首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
在批式培养试验中, 以牛粪堆肥为天然产氢菌源, 玉米芯为底物, 通过厌氧发酵生产氢气。系统考察了底物预处理条件、初始pH值和底物浓度对玉米芯产氢能力的影响。在初始pH 8.0, 1.0%盐酸预处理底物30 min, 底物浓度10 g/L的最佳产氢条件下, 玉米芯最大产氢能力〔每克TVS(总挥发性固体物)产氢量〕和最大产氢速率(每克TVS每小时产氢量)分别为107.9 mL /g、4.20 mL/g·h-1。玉米芯经酸预处理后半纤维素含量由42.2%下降至3.0%, 而酸预处理的玉米芯产氢前后纤维素、半纤维素和木质素含量只有少量变化。产氢菌主要用酸预处理产生的可溶性糖产氢, 故底物的酸预处理对玉米芯的发酵产氢非常重要。用傅里叶变换红外光谱(FTIR)分析显示酸预处理和产氢过程中玉米芯的特征峰发生变化, 酸预处理过程降解了底物纤维素的无定形区和半纤维素, 产氢微生物对纤维素的结晶区有破坏作用。  相似文献   

2.
玉米芯发酵法生物制氢   总被引:3,自引:0,他引:3  
在批式培养试验中, 以牛粪堆肥为天然产氢菌源, 玉米芯为底物, 通过厌氧发酵生产氢气。系统考察了底物预处理条件、初始pH值和底物浓度对玉米芯产氢能力的影响。在初始pH 8.0, 1.0%盐酸预处理底物30 min, 底物浓度10 g/L的最佳产氢条件下, 玉米芯最大产氢能力〔每克TVS(总挥发性固体物)产氢量〕和最大产氢速率(每克TVS每小时产氢量)分别为107.9 mL /g、4.20 mL/g·h-1。玉米芯经酸预处理后半纤维素含量由42.2%下降至3.0%, 而酸预处理的玉米芯产氢前后纤维素、半纤维素和木质素含量只有少量变化。产氢菌主要用酸预处理产生的可溶性糖产氢, 故底物的酸预处理对玉米芯的发酵产氢非常重要。用傅里叶变换红外光谱(FTIR)分析显示酸预处理和产氢过程中玉米芯的特征峰发生变化, 酸预处理过程降解了底物纤维素的无定形区和半纤维素, 产氢微生物对纤维素的结晶区有破坏作用。  相似文献   

3.
以棕榈残渣(Empty fruit bunch,EFB)为原料,通过预处理、酶解、发酵等过程制备纤维乙醇.首先对比了碱、碱/过氧化氢等预处理条件对棕榈残渣组成及酶解的影响,结果表明稀碱预处理效果较好.适宜的稀碱预处理条件为:NaOH浓度为1%,固液比为1∶10,在40℃浸泡24 h后于121℃下保温30 min,在该条件下,EFB的固体回收率为74.09%,纤维素、半纤维素和木质素的含量分别为44.08%、25.74%和13.89%.对该条件下预处理后的固体样品,以底物浓度5%、酶载量30 FPU/g底物酶解72 h,纤维素和半纤维素的酶解率分别达到84.44%和89.28%.进一步考察了酶载量和底物浓度对酶解的影响以及乙醇批式同步糖化发酵,当酶载量为30 FPU/g底物,底物浓度由5%增加至25%时,利用酿酒酵母Saccharomyces cerevisiae(接种量为5%,VIV)发酵72 h后乙醇的浓度分别为9.76 g/L和35.25 g/L,可分别达到理论得率的79.09%和56.96%.  相似文献   

4.
乙酸分级预处理甘蔗渣对纤维素酶解性能的影响   总被引:1,自引:1,他引:0  
为提高甘蔗渣的纤维素酶解性能,采用乙酸脱木素结合碱脱乙酰基的预处理工艺 (Acetoline工艺) 对甘蔗渣进行预处理,考察了乙酸脱木素过程中若干因素对预处理结果的影响,并对预处理后甘蔗渣的纤维素酶解性能进行了研究。结果表明,经过Acetoline预处理后甘蔗渣在7.5%固体含量、15 FPU+10 CBU/g固体的纤维素酶和β-葡萄糖苷酶用量下酶解48 h,酶解聚糖转化率接近80%。与稀酸预处理相比,Acetoline预处理可以得到更高的酶解聚糖转化率。实验结果表明Acetoline工艺是一种可有效提高甘蔗渣纤维素酶解性能的预处理方法。  相似文献   

5.
木质纤维素生物质分布广、产量大、可再生,用于制备生物基能源、生物基材料和生物基化学品。木质纤维素生物质组成复杂,包含纤维素、半纤维素和木质素等,木质素与半纤维素通过共价键、氢键交联形成独特的“包裹结构”,纤维素含有复杂的分子内与分子间氢键,上述因素制约着其资源化利用。生物预处理以其独特优越性成为生物质研究的重要方面。系统阐述了生物预处理过程中木质素降解和基团修饰对纤维素酶解的影响,纤维素含量及结晶区变化,半纤维素五碳糖利用,微观物理结构的改变。进一步提出了以生物预处理为核心的组合预处理、基于不同功能的多酶协同催化体系、木质纤维素组分分级利用和新型高效细菌预处理工艺是生物预处理未来发展的重要趋势。  相似文献   

6.
白腐菌是目前已知的唯一能将木质素彻底降解的微生物,而漆酶在木质素分解过程中起着重要的作用,被广泛应用于农作物秸秆或甘蔗渣等多种类型生物质的生物预处理和生物降解。本研究利用白腐菌产漆酶发酵培养基对30株血红密孔菌Pycnoporus sanguineus菌株进行筛选,得到了多株漆酶高产菌株,并研究了血红密孔菌发酵粗酶液和菌丝对烟梗的生物降解条件。研究结果表明:血红密孔菌及其产生的漆酶表现出了对烟梗木质素较强的生物降解能力。在漆酶浓度为40U/mL、温度30℃、pH4.5的条件下处理24h,烟梗中木质素的降解率可达到50.4%,纤维素和半纤维素的降解率分别为17.5%和17.3%;漆酶浓度为5U/mL、温度30℃、pH4.5的条件下处理48h,木质素降解率可达到65.1%。血红密孔菌菌丝也表现出对烟梗较好的生物降解效果,接种培养7d后烟梗中木质素降解率可达30%以上,21d后木质素的降解率可达79.1%,而纤维素和半纤维素的降解率仅为20%和12%左右。本研究不但为生物质材料的生物预处理和生物降解提供了优质的白腐菌及漆酶资源,还为通过烟梗的生物预处理提高烟草梗丝和卷烟品质提供了重要参数,具有一定的应用前景。  相似文献   

7.
探索亮菌甘蔗渣固体发酵产纤维素和木质素降解酶的能力,对甘蔗渣的充分利用,以及开发新的、高效的产纤维素降解酶和木质素降解酶的微生物资源极为重要。本研究用专一的底物分别对亮菌分泌的外切葡聚糖酶、内切葡聚糖酶、β-葡萄糖苷酶、锰过氧化酶、漆酶和木质素过氧化物酶的酶活力进行测定。结果显示亮菌固态发酵可以分泌外切葡聚糖酶、内切葡聚糖酶、木质素过氧化物酶和漆酶。其酶活力随着时间的延长而增长,达到最高峰值后,开始下降。其中,漆酶酶活力最高,第55天达到最大值为(2 336±183)U/g。各种酶的最高酶活力峰值出现时间不尽相同,体现出多种酶之间很好的协同作用。因此,亮菌甘蔗渣固体发酵具有分泌纤维素和木质素降解酶的能力,尤其产具有高酶活力的漆酶,具有潜在的工业化应用前景。  相似文献   

8.
烟梗是烟草工业的重要副产物,也是宝贵的自然资源。本研究首先利用白腐菌漆酶对烟梗丝进行预处理,提升了添加烟梗丝的卷烟品质;然后分别以木质素、纤维素、半纤维素和果胶的降解率为响应值,采用Box-Behnken设计建立方程模型,对漆酶、纤维素酶、半纤维素酶和果胶酶组成的复合酶预处理烟梗丝条件进行了优化。结果表明:每100g烟梗丝加入30U漆酶,在料液比为35%、温度为30℃、酶解pH为5处理48h的条件下预处理的烟梗丝对提升卷烟品吸效果最佳,烟梗丝中木质素、纤维素、半纤维素和果胶的降解率分别为20.16%、15.10%、7.20%和12.40%;为获得与之相同的各组分降解率,响应面法优化漆酶复合酶最佳处理条件为:每100g烟梗丝加入漆酶14.72U、纤维素酶1.00U、半纤维素酶1.00U、果胶酶8.45U。验证发现烟梗丝各组分降解率实测值与理论值无显著性差异,且显微结构观察显示复合酶处理后的烟梗丝表面致密结构被破坏,孔洞数量明显增加。本研究获得的白腐菌漆酶预处理后的烟梗丝在卷烟中的添加能有效改善卷烟品质,且漆酶复合酶的使用大幅减少了漆酶的用量,降低了漆酶预处理烟梗丝的成本,为废弃烟梗生物质的资源化利用提供了重要依据。  相似文献   

9.
采用稀酸、稀碱、高温稀碱、亚硫酸盐法(SPORL法)和稀酸-亚硫酸盐法(稀酸SPORL法)对粉碎稻草秸秆预处理,考察不同预处理方法对稻草基质多菌发酵产纤维素酶的影响,分析预处理前后稻草基质主要成分的变化,酶水解液中糖组分的含量。结果表明:稀酸SPORL法处理的稻草粉在固态发酵产酶和酶解糖化都具有较好的效果,所得羧甲基纤维素酶(CMCase酶)和β-葡萄糖苷酶(β-G)比酶活分别达到21 511.22和51 508.41 U/g,同时酶水解率达到84.99%。除SPORL法外,其他预处理方式所得酶活均出现了不同程度的下降。稀酸预处理对稻草基质中的半纤维素去除效果较好,含量由20.77%下降到7.34%;稀碱高温处理对木质素脱除效果较好,Klason木质素含量由12.47%下降到7.58%。通过酶解糖化实验发现,未处理稻草粉酶水解率仅为17.82%,稀碱高温法效果最好,稻酶水解率达到91.66%。稀酸和稀酸SPORL法处理后,稻草粉基质的酶解糖化液中,戊聚糖占总糖相对含量较低,分别为7.38%和6.92%。  相似文献   

10.
王伟  崔宝凯  李牧洁 《菌物学报》2012,31(5):745-753
通过化学分析和酶水解试验,研究了不同的白腐菌对毛白杨的预处理效果及不同组分的降解对酶水解的影响。毛白杨木片经6种白腐菌预处理30d后,各组分都发生了降解,其中半纤维素的损失最为显著,Trametes ochracea C6888引起半纤维素降解率高达47.19%,其次是纤维素和酸不溶木素的降解。在后续酶水解过程中,6种白腐菌处理后的样品显示出不同的水解模式,菌株Trametes ochracea C6888、T. pubescens C7571和T. versicolor C6915预处理效果最为显著,还原糖得率在整个酶水解过程中一直高于对照,其中T. ochracea C6888在水解96h后还原糖得率达到15.93%,比未处理样品提高了25%。分析酸不溶木素降解率及半纤维素降解率与还原糖得率的关系发现,不同菌株在作用同一种基质时,预处理效果差异显著,木质素和半纤维素的脱除都会影响木质纤维素的酶水解。  相似文献   

11.
Sugar cane bagasse is recalcitrant to enzymatic digestion, which hinders the efficient conversion of its polysaccharides into fermentable sugars. Alkaline‐sulfite pretreatment was used to overcome the sugar cane bagasse recalcitrance. Chemical and structural changes that occurred during the pretreatment were correlated with the efficiency of the enzymatic digestion of the polysaccharides. The first 30 min of pretreatment, which removed approximately half of the initial lignin and 30% of hemicellulose seemed responsible for a significant enhancement of the cellulose conversion level, which reached 64%. After the first 30 min of pretreatment, delignification increased slightly, and hemicellulose removal was not enhanced; however, acid groups continued to be introduced into the residual lignin. Water retention values were 145% to the untreated bagasse and 210% to the bagasse pretreated for 120 min and fiber widths increased from 10.4 to 30 μm, respectively. These changes were responsible for an additional increase in the efficiency of enzymatic hydrolysis of the cellulose, which reached 92% with the 120 min pretreated sample. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:890–895, 2013  相似文献   

12.
Experiments based on a 23 central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar–alcohol mill. The independent variables selected for study were temperature, varied from 112.5°C to 157.5°C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.  相似文献   

13.
Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic digestibility of cellulose for corn stover pretreated in batch and flowthrough reactors over a range of flow rates between 160 degrees and 220 degrees C, with water only and also with 0.1 wt% sulfuric acid. Increasing flow with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased cellulose digestibility. Furthermore, adding dilute sulfuric acid increased the rate of xylan removal for both batch and flowthrough systems. Interestingly, adding acid also increased the lignin removal rate with flow, but less lignin was left in solution when acid was added in batch. Although the enzymatic hydrolysis of pretreated cellulose was related to xylan removal, as others have shown, the digestibility was much better for flowthrough compared with batch systems, for the same degree of xylan removal. Cellulose digestibility for flowthrough reactors was related to lignin removal as well. These results suggest that altering lignin also affects the enzymatic digestibility of corn stover.  相似文献   

14.
In this study, the production of sugar monomers from sugarcane bagasse (SCB) by sono-assisted acid hydrolysis was performed. The SCB was subjected to sono-assisted alkaline pretreatment. The cellulose and hemicellulose recovery observed in the solid content was 99% and 78.95%, respectively and lignin removal observed during the pretreatment was about 75.44%. The solid content obtained was subjected to sono-assisted acid hydrolysis. Under optimized conditions, the maximum hexose and pentose yield observed was 69.06% and 81.35% of theoretical yield, respectively. The hydrolysate obtained was found to contain very less inhibitors, which improved the bioethanol production and the ethanol yield observed was 0.17 g/g of pretreated SCB.  相似文献   

15.
Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid   总被引:1,自引:0,他引:1  
Kim JW  Kim KS  Lee JS  Park SM  Cho HY  Park JC  Kim JS 《Bioresource technology》2011,102(19):8992-8999
Liberation of fermentable sugars from recalcitrant lignocellulosic biomass is one of the key challenges in production of cellulosic ethanol. Here we developed a two-stage pretreatment process using aqueous ammonia and dilute sulfuric acid in a percolation mode to improve production of fermentable sugars from rice straw. Aqueous NH? was used in the first stage which removed lignin selectively but left most of cellulose (97%) and hemicellulose (77%). Dilute acid was applied in the second stage which removed most of hemicellulose, partially disrupted the crystalline structure of cellulose, and thus enhanced enzymatic digestibility of cellulose in the solids remaining. Under the optimal pretreatment conditions, the enzymatic hydrolysis yields of the two-stage treated samples were 96.9% and 90.8% with enzyme loadings of 60 and 15FPU/g of glucan, respectively. The overall sugar conversions of cellulose and hemicellulose into glucose and xylose by enzymatic and acid hydrolysis reached 89.0% and 71.7%, respectively.  相似文献   

16.
Sugarcane bagasse (SCB) was pretreated with liquid hot water (LHW) and aqueous ammonia (AA), with the objective of investigating the influence of hemicellulose and lignin removal on the enzymatic digestibility and sugar recovery. The experimental results show that LHW and aqueous ammonia have a good performance in terms of hemicellulose dissolution and lignin removal respectively. The biggest xylan recovery of 74.3 % was obtained for LHW pretreatment at 160 °C, 5 %?w/v for 20 min with the xylan dissolution of 83.1 %. And the biggest lignin removal of 84.0 % was obtained for aqueous ammonia pretreatment at 160 °C, 10 %?w/v for 60 min. Moreover, the aperture and surface area of the sample were enlarged by the liquid hot water, which improves the accessibility of the substrate to the enzyme. The lignin removal caused by aqueous ammonia pretreatment can reduce the absorption of enzyme. In addition, the correlation between the compositional change and the enzymatic digestibility indicates that the removal of hemicellulose was more effective than lignin for destruction of the hemicellulose–lignin–cellulose structure.  相似文献   

17.
Various types of pretreatments are used for biomass conversion of woods. The major objective of most pre treatments is to increase the susceptibility of cellulose and lignocellulose material to acid and enzymatic hydrolysis. In this study, southern mixed hardwoods were pretreated by combined rapid steam hydrolysis (RASH) and organosolv methods. It was found that the major factor in the pretreatment was the RASH temperatures. The organosolv temperature had only a minor effect on the reactivity of the final product. The enzymatic rate studies indicated that the RASH process helps in increasing the accessibility of cellulose to enzymatic hydrolysis and increased the amount of soluble lignin While the organosolv process only removed solubilized lignin. Another effect of the combined treatment was the decreasing of the enzymatic rate relative to a single RASH pretreatment. All hemicellulose is lost during these pretreatments. Three alcohols (methanol, ethanol, and butanol) were studied using a combined RASH organosolv process. At lower temperatures there were small differences between the alcohols; however, at higher temperatures all alcohols were equally effective. At longer RASH times, the percentage of glucose in the final product, as well as the amount of solubilized lignin, increased. However, the longer RASH times led to a decrease in enzymatic rates, Organosolv residence time studies of 15, 30, and 45 minutes displayed little effect on the product. Various wood-to-solvent ratios and water-to-alcohol ratios had very little effect on the yield of products. The stability of RASH treated material be fore organosolv process was studied under various storage conditions. The storage conditions had no apparent effect on the product.  相似文献   

18.
Enzymatic saccharification of cellulose is a key step in conversion of plant biomass to advanced biofuel and chemicals. Many substrate-related factors affect saccharification. Rather than examining the role of each individual factor on overall saccharification efficiency, this study examined how each factor affects the three basic processes of a heterogeneous biochemistry reaction: (1) substrate accessibility to cellulose—the roles of component removal and size reduction by pretreatments, (2) substrate and cellulase reactivity limited by component inhibition, and (3) reaction conditions—substrate-specific optimization. Our in-depth analysis of published literature work, especially those published in the last 5 years, explained and reconciled some of the conflicting results in literature, especially the relative importance of hemicellulose vs. lignin removal and substrate size reduction on enzymatic saccharification of lignocelluloses. We concluded that hemicellulose removal is more important than lignin removal for creating cellulase accessible pores. Lignin removal is important when alkaline-based pretreatment is used with limited hemicellulose removal. Partial delignification is needed to achieve satisfactory saccharification of lignocelluloses with high lignin content, such as softwood species. Rather than using passive approaches, such as washing and additives, controlling pretreatment or hydrolysis conditions, such as pH, to modify lignin surface properties can be more efficient for reducing or eliminating lignin inhibition to cellulase, leading to improved lignocellulose saccharification.  相似文献   

19.
The enzymatic saccharification of three different feedstocks, rice straw, bagasse and silvergrass, which had been pretreated with different dilute acid concentrations, was studied to verify how enzymatic saccharification was affected by the lignin composition of the raw materials. There was a quantitatively inverse correlation between lignin content and enzymatic digestibility after pretreatment with 1%, 2% and 4% sulfuric acid. The lignin accounted for about 18.8–21.8% of pretreated rice straw, which was less than the 23.1–26.5% of pretreated bagasse and the 21.5–24.1% of pretreated silvergrass. The maximum glucose yield achieved, under an enzyme loading 6.5 FPU g?1 DM for 72 h, was close to 0.8 g glucose/g glucan from the enzymatic hydrolysis of the pretreated rice straw; this was twice that from bagasse and silvergrass. A decrease in initial rate of glucose production was observed in all cases when the raw materials underwent enzymatic saccharification with 4% sulfuric acid pretreatment. It is suggested that the higher acid concentration led to an inhibition of β-glucosidase activity. Fourier transform infrared (FTIR) spectroscopy further indicated the chemical properties of the rice straw and silvergrass become more hydrophilic after pretreatment using 2% of sulfuric acid, but the pretreated bagasse tended to become more hydrophobic. The hydrophilic nature of the pretreated solid residues may increase the inhibitive effects of lignin on the cellulase and this could become very important for raw materials such as silvergrass that contain more lignin.  相似文献   

20.
Zhang J  Ma X  Yu J  Zhang X  Tan T 《Bioresource technology》2011,102(6):4585-4589
Four pretreatment processes including ionic liquids, steam explosion, lime, and dilute acid were used for enzymatic hydrolysis of sweet sorghum bagasse. Compared with the other three pretreatment approaches, steam-explosion pretreatment showed the greatest improvement on enzymatic hydrolysis of the bagasse. The maximum conversion of cellulose and the concentration of glucose obtained from enzymatic hydrolysis of steam explosion bagasse reached 70% and 25 g/L, respectively, which were both 2.5 times higher than those of the control (27% and 11 g/L). The results based on the analysis of SEM photos, FTIR, XRD and NMR detection suggested that both the reduction of crystallite size of cellulose and cellulose degradation from the Iα and Iβ to the Fibril surface cellulose and amorphous cellulose were critical for enzymatic hydrolysis. These pretreatments disrupted the crystal structure of cellulose and increased the available surface area, which made the cellulose better accessible for enzymatic hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号