首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Mice of the SJL/J and BALB/cByJ inbred strains are naturally resistant to street rabies virus (SRV) injected via the intraperitoneal route. To determine the cellular mechanism of resistance, monoclonal antibodies specific for CD4+ or CD8+ subsets of T cells were used to deplete the respective cell population in SRV-infected animals. Elimination of CD4+ T-helper cells abrogated the production of immunoglobulin G (IgG) neutralizing antibodies in response to rabies virus infection and reversed the resistant status of SJL/J and BALB/cByJ mice. In contrast, in vivo depletion of CD8+ cytotoxic T cells had no measurable effect on host resistance to SRV. These results indicate that serum neutralizing antibodies of the IgG class are a primary immunological mechanism of defense against rabies virus infection in this murine model of disease. CD8+ cytotoxic T lymphocytes, which have been shown to transfer protection in other rabies virus systems, appear to have no role in protecting mice against intraperitoneally injected SRV.  相似文献   

2.
We prepared monoclonal antibodies (MAbs) against the rabies virus N protein, among which one antibody (MAb 5-2-26) was shown to lack reactivity with the phosphatase-treated N protein. The MAb was able to recognize the sodium dodecyl sulfate (SDS)-denatured N protein. The MAb did not recognize the N-protein analogues produced in Escherichia coli (E. coli), indicating that the N-gene products were not normally processed in E. coli after translation. On the other hand, the MAb reacted normally with N-gene products produced in COS-7 cells, but not with those produced in the presence of K-252a (a protein kinase inhibitor of a broad spectrum). The MAb displayed weak cross-reactivity with the Triton-insoluble network structures composed of several components, while another phosphoprotein (M1) of the virus was not recognized at all. These results suggest that MAb 5-2-26 preferentially recognizes a phosphatase-sensitive linear epitope of N protein, which may enable further investigations to be conducted on the mechanism of N-protein phosphorylation and its role(s) in virus replication.  相似文献   

3.
Thirty-five monoclonal antibodies (MAbs) against glycoprotein (G protein) of the RC-HL strain of the rabies virus have been established. Using these MAbs, two antigenic sites (I and II) were delineated on the G protein of the RC-HL strain in a competitive binding assay. Of these, 34 MAbs recognized the epitopes on site IL Site II was further categorized into 10 subsites according to their patterns in a competitive binding assay. Each site II-specific MAb showed 5 to 23 nonreciprocal competitions. The reactivities of 35 MAbs to rabies and rabies-related viruses in an indirect immunofluorescent antibody test showed that six MAbs in group A binded to rabies and rabies-related viruses and eight MAbs in group E reacted only with rabies viruses, considering that the former represent the genus-specific of Lyssavirus and the latter are rabies virus-specific. From biological assays, 28 of the 35 MAbs showed neutralization activity, 31 showed hemagglutination inhibition (HI) activity, and 18 showed immunolysis (IL) activity. The MAbs recognizing neutralization epitopes fell into at least three groups: those exhibiting both HI and IL activity, those showing only HI activity, and those showing neither HI nor IL activity. All IL epitopes overlap with HA epitopes. Five of the nine MAbs which reacted with the antigen treated by sodium dodecyl sulfate in ELISA were not reduced, or reduced only slightly, in the titer. None of the MAbs reacted with 2-mercaptoethanol-treated antigen. Only one MAb that recognized site I reacted with the denatured G protein in a Western blotting assay, indicating that its epitope is linear. These results suggest that almost all of the epitopes on the G protein of the rabies virus are conformation-dependent and the G protein forms a complicated antigenic structure.  相似文献   

4.
Anthrax toxin lethal factor (LF) in combination with anthrax toxin protective antigen (PA) was endocytosed and translocated to the cytosol of mammalian cells. Residues 1-255 of anthrax toxin lethal factor (LFn) was fused to a cytotoxic T lymphocyte (CTL) epitope of an influenza virus. For processing the toxins, PA must be cleaved into a 63-kDa fragment (PA63) by furin, which is a subtilisin-like processing endo-protease expressed by many eukaryotic cells. To test the ability of cells treated with the LFn fusion protein plus PA to deliver the epitope, CTL assay was performed. Two types of cell lines were identified, one was able to deliver CTL epitope while the other failed to efficiently deliver the epitope. To further elucidate the differences between these cells, the role of furin in these cells was examined. Disruption of the furin gene reduced its ability to deliver the CTL epitope. Furin expression in cells capable of efficiently delivering CTL epitope was quantitatively higher than in cells unable to deliver the epitope. The results suggest that furin plays a critical role in delivery of the CTL epitope of LFn fusion protein.  相似文献   

5.
We have established a murine hybridoma cell line RG719 which produces a rabies virus-neutralizing IgM-type monoclonal antibody (referred to as MAb RG719). Immunoblot analysis indicated that the antibody recognized a sequential epitope of G protein. Among four rabies virus strains tested, the antigenicity to MAb RG719 was absent from the Nishigahara strain, while the other three strains (HEP, ERA and CVS) reacted to the MAb. Studies with deletion mutants of the G protein indicated that the epitope was located in a middle region of the primary structure of G protein, ranging from position 242 to 300. By comparing the estimated amino acid sequence of the four strains, we found in this region two amino acids (at positions 263 and 291) which are common to three of those strains but are not shared by the Nishigahara strain. The site-directed point mutagenesis revealed that replacement of phenylalanine-263 by leucine destroyed the epitope of the HEP G protein, while the epitope was generated on the Nishigahara G protein whose leucine-263 was replaced by phenylalanine. These observations suggest that phenylalanine-263 is essential for constructing the epitope for MAb RG719. The synthetic 20-mer peptide produced by mimicking the amino acid sequence (ranging from amino acid positions 249 to 268) of the presumed epitope region was shown to bind specifically to MAb RG719 and also to raise the virus-neutralizing antibodies in rabbits. Vaccination with the HEP vaccine produced in Japan induced in humans and rabbits production of significant amounts of the antibodies which reacted with the 20-mer peptide.  相似文献   

6.
To analyze the nature of the HLA class II-restricted cytotoxic T-lymphocyte (CTL) response to measles virus, murine fibroblasts were transfected with expressible cDNA clones for human HLA-DR antigen and for measles virus matrix or nucleocapsid proteins. DR-positive murine fibroblasts transfected with measles virus matrix or nucleocapsid genes were lysed by class II-restricted measles virus-specific CTL lines. Lysis was as efficient as with infected autologous B-cell lines, even though the measles virus cytoplasmic proteins were undetectable by antibodies in the transfected target cells. These results demonstrate that cytoplasmic viral antigens can be presented to CTL in the context of HLA class II antigens and that measles virus matrix and nucleocapsid proteins contribute to class II-restricted measles virus-specific CTL responses. These results also show that endogenously synthesized measles virus proteins can be efficiently presented by class II antigens. The implications of these findings for measles virus pathogenesis and for antigen processing are discussed.  相似文献   

7.
Matrix (M) protein of rabies virus is known to play an important role in assembly and budding of the progeny virus. We generated an M gene-deficient rabies virus, RC-HLDeltaM, using a reverse genetics system of rabies virus RC-HL strain to develop a novel type of vaccine. RC-HLDeltaM infection was confined within a single cell in mouse neuroblastoma cells. This deficient virus failed to generate the progeny virus in the cells. In contrast, RC-HLDeltaM propagated in BHK cells inductively expressing M protein. Suckling and adult mice inoculated intracerebrally with the parental RC-HL strain showed lethal infection and transient body weight loss, respectively, whereas both suckling and adult mice inoculated with RC-HLDeltaM showed no symptoms. The neutralizing antibody against rabies virus was successfully induced by intramuscular immunization with 10(5) focus-forming units of RC-HLDeltaM but not UV-inactivated RC-HL. Intranasal immunization with RC-HLDeltaM resulted in almost the same antibody titer to rabies virus as that in the case of immunization with live RC-HL strain. These findings indicate that RC-HLDeltaM is a candidate for a novel rabies vaccine that is safer and more effective than are current vaccines.  相似文献   

8.
Rabies is a fatal viral encephalitis which is transmitted by exposure to the bite of rabid animals. Human and equine rabies immunoglobulins are indispensable pharmacological agents for severe bite exposure, as is vaccine. However, several disadvantages, including limited supply, adverse reactions, and high cost, hamper their wide application in developing countries. In the present study, two novel huMabs which neutralize rabies virus were established from vaccinated hyperimmune volunteers using the Epstein‐Barr virus transformation method. One MAb (No. 254), which was subclass IgG3, effectively neutralized fixed rabies viruses of CVS, ERA, HEP‐Flury, and Nishigahara strains and recognized a well‐conserved epitope located in antigenic site II of the rabies virus glycoprotein. No. 254 possessed 68 ng/ml of FRNT50 activity against CVS, 3.7 × 10?7 M of the Kd value, and the enhancing effect of complement‐dependent virolysis. In addition, No. 254 showed effective neutralization potency in vivo in the mouse challenge test. The other MAb, 4D4, was subclass IgM and showed neutralizing activity against CVS and Nishigahara strains. 4D4 recognized a novel antigenic site which is associated with the neurovirulence of rabies, a glycoprotein located between antigenic site I and VI. Both human MAbs against rabies are expected to be utilized as a tool for future post‐exposure prophylaxis.  相似文献   

9.
We have recently shown that murine target cells can be sensitized for lysis by class I-restricted influenza virus-specific cytotoxic T lymphocytes (CTL) using noninfectious influenza virus. Sensitization is dependent on inactivation of viral neuraminidase activity (which can be achieved by heating virus); and requires fusion of viral and cellular membranes. In the present study, we have examined recognition of antigens derived from heat-treated virus by cloned CTL lines induced by immunization with infectious virus. Target cells sensitized with heat-treated virus were recognized by all 11 CTL clones that were specific for internal virion proteins (nucleoprotein and basic polymerase 1), and by one of six clones specific for the major viral glycoprotein (the hemagglutinin). Immunization of mice with heat-treated virus primed their splenocytes for secondary in vitro CTL responses. CTL generated in this manner recognized target cells infected with recombinant vaccinia virus expressing cloned influenza virus gene products. These findings indicate that both integral membrane proteins and internal proteins that comprise virions can be processed by antigen-presenting cells for recognition by class I-restricted CTL. It also appears that not all hemagglutinin determinants recognized on virus-infected cells are presented by cells sensitized with heat-treated virus.  相似文献   

10.
将狂犬病病毒中和性单链抗体基因克隆入原核表达载体pET-PE40,经酶切鉴定及序列测定,成功构建了重组免疫毒素原核表达载体。IPTG诱导后目的蛋白获得高效表达,SDS-PAGE分析目的蛋白主要以不溶性包涵体的形式存在于菌体中,表达量占菌体总蛋白的32.29%。包涵体蛋白经体外复性及离子交换色谱柱、疏水作用色谱柱、Sephadex G200凝胶过滤层析柱三步纯化后获得纯度大于96%的目的蛋白,间接免疫荧光染色检测表明重组免疫毒素与狂犬病病毒感染细胞具有抗原结合活性,MTT试验显示,重组免疫毒素对狂犬病病毒感染细胞具有明显的杀伤作用,而对正常细胞无杀伤作用。  相似文献   

11.
A recombinant rabies virus carrying double glycoprotein (G) genes, R(NPMGGL) strain, was generated by a reverse genetics system utilizing cloned cDNA of the RC-HL strain, and the biological properties of the virus were compared to those of the recombinant RC-HL (rRC-HL) strain. The extents of virus growth in cultured cells and virulence for adult mice of the R(NPMGGL) strain were almost same as those of the rRC-HL strain, while G protein content of the purified R(NPMGGL) virion and G protein expression level in R(NPMGGL)-infected cells were 1.5-fold higher than those of the rRC-HL strain. As a result of serial passages of the R(NPMGGL) strain in cultured cells, the expression level of G protein in cultured cells infected with the passaged R(NPMGGL) strain was maintained and virus titers rose with adaptation to the cultured cells. Furthermore, analysis of neutralization titers in mice immunized with UVinactivated virus suggested that the R(NPMGGL) strain had higher immunogenicity than that of the rRC-HL strain. The results suggest that the R(NPMGGL) strain carrying double G genes might be a useful candidate for development of a new inactivated rabies vaccine.  相似文献   

12.
To determine whether rabies viruses replicate in macrophage or macrophage-like cells, several human and murine macrophage-like cell lines, as well as primary cultures of murine bone marrow macrophages, were incubated with the Evelyn-Rokitnicki-Abelseth (ERA) virus and several different street rabies viruses (SRV). ERA rabies virus replicated well in human monocytic U937 and THP-1 cells and murine macrophage IC-21 cells, as well as primary cultures of murine macrophages. Minimal replication was detected in murine monocytic WEHI-3BD- and PU5-1R cells, and ERA virus did not replicate in murine monocytic P388D1 or J774A.1 cells. A tissue culture-adapted SRV of bat origin also replicated in IC-21 and U937 cells. Non-tissue culture-adapted SRV isolated from different animal species, particularly bats, replicated minimally in U937, THP-1, IC-21 cells and primary murine bone marrow macrophages. To determine whether rabies virus replication is dependent upon the state of differentiation of the macrophage-like cell, human promyelocytic HL-60 cells were differentiated with 12-O-tetradecanoylphorbol-13-acetate (TPA). ERA rabies virus replicated in the differentiated HL-60 cells but not in undifferentiated HL-60 cells. Persistent infections were established in macrophage-like U937 cells with ERA rabies virus and SRV, and infectious SRV was isolated from adherent bone marrow cells of mice that had been infected 96 days previously. Virus harvested from persistently infected U937 cells and the adherent bone marrow cells had specifically adapted to each cell. This specificity was shown by the inability of the viruses to infect macrophages other than U937 cells and primary bone marrow macrophages, respectively. Virus titers of the persistently infected U937 cells fluctuated with extended cell passage. After 30 passages, virus released from the cells had lost virulence as shown by its inability to kill intracranially inoculated mice. However, the avirulent virus released from the persistently infected cells was more efficient in infecting and replicating in naive U937 cells than the virus which was used to establish the persistent infection. These results suggest that macrophages may serve as reservoirs of infection in vivo, sequestering virus which may subsequently be activated from its persistent state, resulting in clinical infection and death.  相似文献   

13.
表达纯化不同标签、不同大小3个狂犬病病毒糖蛋白,分析其结合功能后,得到具备高亲和力的、可特异性结合记忆性B细胞的狂犬病病毒糖蛋白。本实验通过基因工程的方法,采用不同的原核表达系统分别表达带有不同标签的、全长和膜外区的RVG,纯化蛋白并分析比较其结合功能,荧光标记候选蛋白,结合CD19及CD27的抗体,流式细胞术检测狂犬疫苗免疫后PBMCs中抗狂犬病病毒特异性记忆性B细胞的情况,确认候选蛋白与抗狂犬病毒特异性记忆性B细胞的结合功能。本实验成功构建了3个表达载体pGEX-5X-1-RVG、pET28a-RVG和pET30a-G,优化表达纯化条件成功获得了糖蛋白GST-RVG、His-RVG和His-G。纯化后的GST-RVG、His-RVG和His-G经Western blotting和ELISA鉴定均有抗原特异性;由竞争ELISA法测得3个纯化后糖蛋白与抗狂犬病病毒抗体的亲和力。通过流式细胞术可以检测到狂犬疫苗免疫后阳性志愿者PBMCs中的抗狂犬病病毒特异性记忆性B细胞,从而获得了高亲和力、可用于分选抗原特异性的记忆性B细胞的狂犬病病毒糖蛋白。  相似文献   

14.
To understand the virus-cell interactions that occur during murine coronavirus infection, six murine cell lines (A3-1M, B16, CMT-93, DBT, IC-21 and J774A.1) were inoculated with eight murine coronaviruses, including prototype strains of both polytropic and enterotropic biotypes, and new isolates. All virus strains produced a cytopathic effect (CPE) with cell-to-cell fusion in B16, DBT, IC-21 and J774A.1 cells. The CPE was induced most rapidly in IC-21 cells and was visible microscopically in all cell lines tested. In contrast, the coronaviruses produced little CPE in A3-1M and CMT-93 cells. Although most virus-infected cells, except KQ3E-infected A3-1M, CMT-93 and J774A.1 cells, produced progeny viruses in the supernatants when assayed by plaque formation on DBT cells, the kinetics of viral replication were dependent on both the cell line and virus strain; replication of prototype strains was higher than that of new isolates. There was no significant difference in replication of enterotropic and polytropic strains. B16 cells supported the highest level of viral replication. To determine the sensitivity of the cell lines to murine coronaviruses, the 50% tissue culture infectious dose of the coronaviruses was determined with B16, DBT, IC-21 and J774A.1 cells, and compared to that with DBT cells. The results indicate that IC-21 cells were the most sensitive to murine coronaviruses. These data suggest that B16 and IC-21 cells are suitable for large-scale preparation and isolation of murine coronaviruses, respectively.  相似文献   

15.
GDVII subgroup strains of Theiler's murine encephalomyelitis virus (TMEV) are highly virulent and produce acute polioencephalomyelitis in mice. Neither viral persistence nor demyelination is demonstrated in the few surviving mice. In contrast, DA subgroup strains are less virulent and establish a persistent central nervous system infection which results in demyelinating disease. We previously reported a subgroup-specific infection in a macrophage-like cell line, J774-1 cells; i.e., GDVII strain does not replicate in J774-1 cells, whereas the DA strain actively replicates in these cells. In addition, this subgroup-specific virus growth is shown to be related to the presence of L* protein, a 17 kDa protein translated out-of-frame of the viral polyprotein from an AUG located 13 nucleotides downstream from the polyprotein's AUG. The present paper demonstrated that this subgroup-specific infection is observed in murine monocyte/macrophage lineage cell lines, but not in other murine cell lines including neural cells. An RNase protection assay also suggested that L* protein-related virus growth is regulated at the step of viral RNA replication. As macrophages are reported to be the major cell harboring virus during the chronic demyelinating stage, the activity of L* protein with respect to virus growth in macrophages may be a key factor in clarifying the mechanism(s) of TMEV persistence, which is probably a trigger to spinal cord demyelination.  相似文献   

16.
A set of 29 monoclonal antibodies (MAbs) specific for the rabies virus nucleoprotein (N protein) was prepared and used to analyze the topography of antigenic sites. At least four partially overlapping antigenic sites were delineated on the N protein of rabies virus by competitive binding assays. Indirect immunofluorescent antibody tests using MAbs with a series of rabies and rabies-related viruses showed that epitopes shared by various fixed and street strains of rabies virus were mainly localized at antigenic sites II and III, while epitopes representing the genus-specific antigen of Lyssavirus were widely presented at sites I, III and IV. All but one of seven MAbs specific for antigenic sites I, IV and bridge site (I and II) reacted with the antigen that had been denatured by sodium dodecyl sulfate or 2-mercaptoethanol, as well as with the denatured N protein in Western blotting assays. However, none of the MAbs against antigenic sites II and III reacted with the denatured antigen. These data indicate that antigenic sites I and IV, and sites II and III on the N protein of rabies virus are composed of linear and conformation-dependent epitopes, respectively.  相似文献   

17.
狂犬病病毒抗体胶体金检测试纸的制备   总被引:1,自引:0,他引:1  
通过胶体金免疫层析技术建立一种特异、便捷、快速的狂犬病病毒抗体检测方法,对犬等动物免疫狂犬病疫苗后的抗体水平监测提供参考。用醋酸锌沉淀法沉淀狂犬病病毒CVS11,Sepharose 4FF进行层析纯化。用柠檬酸三钠还原法制备的胶体金,标记纯化的狂犬病病毒,喷于试纸的结合释放垫 (金标垫),将SPA (葡萄球菌表面A蛋白) 和纯化的兔抗狂犬病病毒IgG分别喷于试纸的T (检测线) 处和C (对照线) 处,组装试纸条。用制备的试纸条对261份犬血清进行检测,与快速荧光灶抑制试验 (RFFIT) 检测的结果一致;对已知效价的犬狂犬病毒中和抗体 (VNA) 大于0.5 IU,结果为阳性;对狂犬病病毒中和抗体 (VNA) 小于0.5 IU/mL的血清,结果为阴性。制备的狂犬病病毒抗体胶体金检测试纸检测犬血清抗体,具有特异、便捷、快速的特点,能够检测出狂犬病病毒中和抗体大于0.5 IU的血清,适用于临床犬血清抗体水平监测,具有良好的应用前景。  相似文献   

18.
贾茜  徐葛林  赵伟  吴杰  郑新雄 《病毒学报》2006,22(4):256-261
用不同的动物模型研究了具有专利的重组人抗狂犬病病毒单克隆抗体SO57、SOJB对不同狂犬病病毒株的中和作用,100IU/kg的SO57能100%保护被中国街毒株SBD攻击的中国仓鼠;首次用小鼠模型模拟人体被狂犬病病毒攻击后的治疗情况,在小鼠被CVS及中国街毒代表株攻击后,SO57与HRIG具有相近的对小鼠的暴露后保护作用;同时结果显示HRIG对SBD株攻击的保护率不能到达100%,仅使用疫苗是不能对感染病毒的小鼠百分之百的保护;SOJB与SO57 1:1联合使用未显示比SO57单独使用更好的保护效果。SO57极有可能在中国代替HRIG用于狂犬病病毒暴露后治疗。  相似文献   

19.
为了研制基因工程狂犬病疫苗,我国于1991年首次报道了在痘苗病毒天坛株中表达狂犬病毒糖蛋白,但报道中重组病毒的选择是先经人骨髓瘤细胞(TK-143)在诱变剂5-溴脱氧尿苷(BrudR)作用下通过标记拯救技术筛选出携带有同源基因的重组病毒,然后再利用重组病毒中携带的Lac基因为选择标记,通过噬斑纯化获得重组病毒,用这种选择方式获得的重组病毒,经过了TK-143细胞和BrudR,因此不宜发展成疫苗,本研究探索不经过TK-143细胞和BrudR,仅利用Lac基因为选择标记,直接在鸡胚细胞上通过噬斑纯化获得重组病毒,现将研究结果报道如下。  相似文献   

20.
Human cytolytic T lymphocytes (CTL) clones and HLA-A2- and HLA-B7-transfected human, monkey, and mouse cell lines were used to investigate the basis for species-restricted antigen recognition. Most allospecific CTL clones obtained after stimulation with the human JY cell line (source of HLA-A2 and HLA-B7 genomic clones) recognized HLA antigens expressed in human and monkey cell lines but did not recognize HLA expressed in murine cells. By initially stimulating the responder cells with HLA-transfected mouse cells, two CTL clones were obtained that recognized HLA expressed in murine cells. Functional inhibition of these CTL clones with anti-class I monoclonal antibodies (MAb) indicated that clones reactive with HLA+ murine cells were of higher avidity than clones that did not recognize HLA+ murine target cells. MAb inhibition of accessory molecule interactions demonstrated that the LFA-1 and T8 surface molecules were involved in CTL-target cell interactions in all three species. In contrast, the LFA-2/CD2 molecule, previously shown to participate in a distinct activation pathway, was involved in the cytolysis of transfected human and monkey target cells, but not in the lysis of HLA+ murine cells. Thus transfection of HLA genes into different recipient species cell lines provides us with the ability to additionally delineate the functional requirements for allospecific CTL recognition and lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号