首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
激素型肾阳虚动物肝线粒体蛋白质组与能量代谢相关性   总被引:11,自引:0,他引:11  
应用凝胶内差异显示电泳技术研究肾阳虚大鼠肝线粒体蛋白质组,并从肝线粒体蛋白质组角度阐述肾阳虚与能量代谢的关系.8个分别来自于肾阳虚大鼠和正常大鼠的肝线粒体蛋白质样品(各4个)分别用荧光染料Cy3、Cy5标记,以及8个样品等量混合物用Cy2标记作为内标,每一Cy3、Cy5标记样品与Cy2标记的内标等量混合后在同一胶中进行电泳分离,经不同光激发后扫描得到不同样品的蛋白质组图谱.经DeCyder软件结合内标分析,以肾阳虚组动物与正常组动物肝线粒体蛋白质相差1.2倍以上的蛋白作为差异蛋白,实验共获得16个差异蛋白质,经质谱测定和与蛋白质文库比对,鉴定11个蛋白质.其中,肾阳虚动物热休克蛋白60和70、肌氨酸脱氢酶、氨甲酰磷酸合成酶、亚硫酸盐氧化酶、ATP合酶、醛脱氢酶和NADH脱氢酶表达量增加,而丙酮酸脱氢酶、α酮戊二酸脱氢酶、脂酰辅酶A脱氢酶和鸟氨酸氨基转移酶表达量降低.实验表明,肾阳虚动物能量代谢相关酶的变化与肾阳虚的临床虚寒症状有关.  相似文献   

2.
目的:建立具有高分辨率和稳定性的乳腺增生组织蛋白质组的双向电泳图谱,并对其进行差异蛋白质组分析。方法:取乳腺增生病患者增生部位及正常部位乳腺组织,匀浆提取乳腺组织总蛋白,分别用Cy3或Cy5标记,每一对Cy3和Cy5标记样品都与一个Cy2标记的内标等量混合,上样于同一胶中进行电泳分离,经不同光激发下扫描得到不同样品的蛋白质组图谱。所获得的图谱经DeCyder软件进行分析。结果:在乳腺增生病增生的组织中,有12个蛋白质表达水平显著增加,另外3个蛋白质表达水平显著下降。结论:利用DIGE技术可以作胶内时比分析,也可以根据内标消除胶与胶之间的差异,提高统计的可信度;分析所得的15个差异蛋白质可能与乳腺增生疾病的发生与发展有关。  相似文献   

3.
Zhang X  Guo Y  Song Y  Sun W  Yu C  Zhao X  Wang H  Jiang H  Li Y  Qian X  Jiang Y  He F 《Proteomics》2006,6(19):5260-5268
Normal Chinese Liver Proteome Expression Profile is one of the major parts of Human Liver Proteome Project. Before starting the studies, it is necessary to examine the interindividual variation of normal liver proteome and evaluate the minimal size of samples for proteomic analysis. In this study, normal liver samples from ten individual volunteers were collected and the proteome profiles of these samples were analyzed using 2-D difference gel electrophoresis (DIGE) combined with MALDI-TOF/TOF MS. The individual liver tissue lysates were labeled with Cy3 and Cy5 while the pooled sample was labeled with Cy2 as an internal standard, which minimized gel-to-gel variation. After analysis by the DeCyder software, up to 2056 protein spots were detected on the master gel. The CV of standardized abundance was calculated for the protein spots that were matched across all ten gels. The CV values of these protein spots ranged from 6.4 to 108.5% and the median CV was approximately 19%, which demonstrated that the protein expression of normal liver among different individuals was relatively stable. The eight proteins with CV values over 50% were identified which would be a caveat when considering these proteins as potential disease-related markers. Moreover, the one-way ANOVA feature showed a correlation between sample size and individual variations. The results showed that when the sample size exceeded 7, the individual variations were not significant to the whole pool. Our results are an important basis for liver protein expression profiles and comparative proteomics of liver disease.  相似文献   

4.
Surface proteins are central to the cell''s ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.Open in a separate windowClick here to view.(76M, flv)  相似文献   

5.
6.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death throughout the world. Although hepatitis B or C viral infections are main risk factors for HCC, the molecular mechanisms leading to HCC formation have not been clarified. To reduce the mortality and improve the effectiveness of therapy, it is important to search for changes in tumor-specific biomarkers whose function may involve in disease progression and which may be useful as potential therapeutic targets. In this study, we employed two-dimensional difference gel electrophoresis (2D-DIGE) combined with nano flow liquid chromatography tandem mass spectrometry (nanoLC-MS/MS) to investigate differentially expressed proteins in HCC. For each of eight HCC patients, Cy3-labeled proteins isolated from tumor tissue were combined with Cy5-labeled proteins isolated from the surrounding nontumor tissue and separated by 2D gel electrophoresis along with a Cy2-labeled mixture of all tumor and nontumor samples as an internal standard. Thirty-four protein spots corresponding to 30 different proteins were identified by nanoLC-MS/MS as showing significant change (paired t-test, p < 0.05) in the level of expression between tumor and nontumor tissues. Sixteen proteins were up-regulated and 14 were down-regulated in HCC; they seem to play important roles in a variety of pathways including glycolysis, fatty acid transport and trafficking, amino acid metabolism, iron and xenobiotic metabolism, ethanol metabolism, cell cycle regulation, cytoskeleton, and stress. A remarkable finding is the up-regulation of 14-3-3gamma protein in HCC. 14-3-3 isoforms had been linked to carcinogenesis because they are involved in various cellular processes such as cell cycle regulation, apoptosis, proliferation, and differentiation. In conclusion, 2D-DIGE is an efficient strategy that enables us to identify differentially expressed proteins in HCC. Identification of potential biomarkers, such as the pinpointing of 14-3-3gamma in our findings, may provide further useful insights into the pathogenesis of HCC.  相似文献   

7.
There is a growing interest in protein expression profiling aiming to identify novel diagnostic markers in breast cancer. Proteomic approaches such as two-dimensional differential gel electrophoresis coupled with tandem mass spectrometry analysis (2-D DIGE/MS/MS) have been used successfully for the identification of candidate biomarkers for screening, diagnosis, prognosis and monitoring of treatment response in various types of cancer. Identifying previously unknown proteins of potential clinical relevance will ultimately help in reaching effective ways to manage the disease. We analyzed breast cancer tissues from five tumor and five normal tissue samples from ten breast cancer subjects with infiltrating ductal carcinoma (IDC) by 2-D DIGE using two types of immobilized pH gradient (IPG) strips: pH 3-10 and pH 4-7. From all the spots detected, differentially expressed (p < 0.05 and ratio > 2) were 50 spots. Of these, 39 proteins were successfully identified by MS, representing 29 different proteins. Ten proteins were overexpressed in the tumor samples. The 2-D DIGE/MS/MS analysis revealed an increase in the expression levels in tumor samples of several proteins not previously associated with breast cancer, such as: macrophage-capping protein (CAPG), phosphomannomutase 2 (PMM2), ATPase ASN1, methylthioribose-1-phosphate isomerase (MRI1), peptidyl-prolyl cis-trans isomerase FKBP4, cellular retinoic acid-binding protein 2 (CRABP2), lamin B1 and keratin, type II cytoskeletal 8 (KRT8). Ingenuity Pathway Analysis (IPA) revealed highly significant (p = 10(-26)) interactions between the identified proteins and their association with cancer. These proteins are involved in many diverse pathways and have established roles in cellular metabolism. It remains the goal of future work to test the suitability of the identified proteins in samples of larger and independent patient groups.  相似文献   

8.
胃癌及癌旁组织定量比较蛋白质组学研究   总被引:2,自引:0,他引:2  
为寻找胃癌特异的肿瘤标记物,用于胃癌临床诊断及药物治疗靶点的选择,本研究采用荧光差异显示凝胶电泳(DIGE)技术分离并筛选 Cy3、Cy5 及 Cy2 荧光素标记的胃癌及对应癌旁组织差异表达蛋白质,用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)或串联质谱技术进行鉴定并分析。结果共筛选出 33 个差异表达蛋白质点,其中 9 个蛋白质点在胃癌组织中上调,24 个蛋白质点下调。对 22 个蛋白质点采用质谱技术成功鉴定,突变结蛋白、锰超氧化物歧化酶、热休克蛋白 60等在胃癌中高表达,热休克蛋白 27、前列腺素 F 合酶、硒结合蛋白 1、锌指蛋白 160、微管蛋白 α6、真核生物翻译延伸因子 1 α1 等在胃癌组织中低表达,并筛选出 5 个未知蛋白。这些差异表达蛋白可望成为胃癌诊断的特异标记物,并与胃癌的发生、发展及预后等有关,为胃癌的诊断、发生机制的研究提供了新的思路。  相似文献   

9.
Today biomarker discovery is one of the most active aspects of proteomic investigations. However, the wide dynamic range of plasma proteins makes the analysis very challenging because high abundance proteins tend to mask those of lower abundance. Using a large bead-based library of combinatorial peptide ligands (Equalizer beads or ProteoMiner), the dynamic range of the protein concentration is compressed, the high abundance proteins present in the sample are reduced and the low abundance proteins are enriched, while retaining representatives of all proteins within the sample. In the present study, the combination of beads with surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and two-dimensional differential gel electrophoresis (2-D DIGE) technology were evaluated considering efficiency, reproducibility, sensitivity, and compatibility. The bead technology is easily compatible with both SELDI-TOF-MS and 2-D DIGE and the samples can be analyzed directly without any processing of the sample. The use of the beads prior SELDI-TOF-MS and 2-D DIGE enabled detection of many new protein spots/peaks and increased resolution and improved intensity of low abundance proteins in a reproducible fashion compared with the depletion technique. Several proteins have been identified by the combination of beads, 2-D DIGE and MS for example different kinds of complement factors and cytoskeletal proteins. Our data suggest that integration of the bead technology with our current proteomic technologies will enhance the possibility to deliver new peptide/protein biomarker candidates in our projects.  相似文献   

10.
Two-dimensional gel electrophoresis (2DE) is a central tool of proteome research, since it allows separation of complex protein mixtures at highest resolution. Quantification of gene expression at the protein level requires sensitive visualization of protein spots over a wide linear range. Two-dimensional difference gel electrophoresis (2D DIGE) is a new fluorescent technique for protein labeling in 2DE gels. Proteins are labeled prior to electrophoresis with fluorescent CyDyes trade mark and differently labeled samples are then co-separated on the same 2DE gel. We evaluated 2D DIGE for detection and quantification of proteins specific for glucose or N-acetylglucosamine metabolism in the marine bacterium Pirellula sp. strain 1. The experiment was based on 10 parallel 2DE gels. Detection and comparison of the protein spots were performed with the DeCyder trade mark software that uses an internal standard to quantify differences in protein abundance with high statistical confidence; 24 proteins differing in abundance by a factor of at least 1.5 (t test value <10(-9)) were identified. For comparison, another experiment was carried out with four SYPRO-Ruby-stained 2DE gels for each of the two growth conditions; image analysis was done with the ImageMaster trade mark 2D Elite software. Sensitivity of the CyDye fluors was evaluated by comparing Cy2, Cy3, Cy5, SYPRO Ruby, silver, and colloidal Coomassie staining. Three replicate gels, each loaded with 50 microg of protein, were run for each stain and the gels were analyzed with the ImageMaster software. Labeling with CyDyes allowed detection of almost as many protein spots as staining with silver or SYPRO Ruby.  相似文献   

11.
Two-dimensional difference gel electrophoresis (2-D DIGE) enables an increased confidence in detection of protein differences. However, due to the nature of the minimal labelling where only approximately 5% of a given protein is labelled, spots cannot be directly excised for mass spectrometry (MS) analysis and detection sensitivity could be further enhanced. Amersham Biosciences have developed a second set of CyDye DIGE Cy 3 and Cy5 dyes, which aim to overcome these limitations through saturation-labelling of cysteine residues. The dyes were evaluated in relation to their sensitivity and dynamic range, their useability as multiplexing reagents and the possibility of direct spot picking from saturation-labelled gels for MS analysis. The saturation-labelling dyes were superior in sensitivity to their minimal-labelling counterparts, silver stain and Sypro Ruby, however, the resulting 2-D spot pattern was significantly altered from that of unlabelled or minimal-labelled protein. The dyes were found to be useful as multiplexing reagents although preferential labelling of proteins with one dye over another was observed but was controlled for through experimental design. Protein identities were successfully obtained from material directly excised from saturation-labelled gels eliminating the need for post-stained preparative gels.  相似文献   

12.
The comparison of two-dimensional (2-D) gel images from different samples is an established method used to study differences in protein expression. Conventional methods rely on comparing images from at least 2 different gels. Due to the high variation between gels, detection and quantification of protein differences can be problematic. Two-dimensional difference gel electrophoresis (Ettan trade mark DIGE) is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. In the application of DIGE different samples are labelled with mass and charge matched spectrally resolvable fluorescent dyes and are then separated on the same 2-D gel. Using an Escherichia coli lysate "spiked" with varying amounts of four different known proteins, we have tested a novel experimental design that exploits the sample multiplexing capabilities of DIGE, by including a standard sample in each gel. The standard sample comprises equal amounts of each sample to be compared and was found to improve the accuracy of protein quantification between samples from different gels allowing accurate detection of small differences in protein levels between samples.  相似文献   

13.
双向凝胶电泳中三种蛋白质检测方法的比较   总被引:5,自引:0,他引:5  
高通量双向电泳是蛋白质组学的核心 ,双向电泳凝胶上蛋白质点的检测方法应具有灵敏度高、线性范围宽和兼容质谱鉴定等优点 .采用差异凝胶电泳 (differencegelelectrophoresis ,DIGE)技术以Cy3(1 (5 carboxypentyl) 1′ propylindocarbocyaninehalideN hydroxysuccinimidylester)和Cy5 (1 (5 carboxypentyl) 1′ methylindodicarbocyaninehalideN hydroxysuccinimidylester)荧光分别标记正常和TNF α处理细胞的蛋白质 ,用Cy2 (3 (4 carboxymethyl)phenylmethyl) 3′ ethyloxacarbocyaninehalideN hydroxysuccinimidylester)荧光标记正常和TNF α处理细胞蛋白质的等量混合样品作为内标 ,混合 3种荧光标记的蛋白质后 ,在同一等电聚焦胶条进行聚焦 ,然后在聚丙烯酰胺凝胶上进行第二向电泳 ,用 3种波长的激光激发扫描得到凝胶图象 ,DIGE中多个样品在同一条件下电泳 ,因而匹配率高 ,且引入内标使蛋白质点的检测与定量更为准确 .DIGE技术与质谱相结合 ,实现了高通量和相对准确定量 .与硝酸银和考马斯亮蓝染色结果相比较 ,DIGE技术具有灵敏度高、线性范围宽和不影响后续质谱鉴定等优点  相似文献   

14.
The purpose of this study was to develop techniques for identifying cancer biomarkers in human serum using differential in-gel electrophoresis (DIGE), and characterizing the protein biomarkers using tandem mass spectrometry (MS/MS). A major problem in profiling protein expression by DIGE comes from the presence of high concentrations of a small number of proteins. Therefore, serum samples were first chromatographed using an immunoaffinity HPLC column (Agilent Technologies), to selectively remove albumin, immunoglobulins, transferrin, haptoglobin, and antitrypsin. Serum samples from three individuals with pancreatic cancer and three individuals without cancer were compared. Serum samples were processed using the immunoaffinity column. Differential protein analysis was performed using DIGE. A total of 56 protein spot-features were found to be significantly increased and 43 significantly decreased in cancer serum samples. These spot features were excised, trypsin digested, and analyzed by MALDI/TOF/TOF (4700 Proteomics Analyzer, Applied Biosystems). We identified 24 unique proteins that were increased and 17 unique proteins that were decreased in cancer serum samples. Western blot analysis confirmed increased levels of several of these proteins in the pancreatic cancer serum samples. In an independent series of serum samples from 20 patients with pancreatic cancer and 14 controls, increased levels of apolipoprotein E, alpha-1-antichymotrypsin, and inter-alpha-trypsin inhibitor were found to be associated with pancreatic cancer. These results suggest that affinity column enrichment and 2-D DIGE can be used to identify numerous proteins differentially expressed in serum from individuals with pancreatic cancer.  相似文献   

15.
Seshi B 《Proteomics》2007,7(12):1984-1999
Global comparative proteomics is a promising new approach with broad application in basic and clinical biological science. Recent advances include the development of 2-D DIGE, a proteomic equivalent to mRNA differential display, in which differentially labeled samples are multiplexed and analyzed by high-resolution 2-DE. This study presents a new 2-D DIGE protocol, in which complex protein samples from normal and leukemic human bone marrow mesenchymal progenitor cells were used as model samples for a novel combination of liquid-phase IEF with 2-D DIGE. Using liquid-phase IEF, the normal and leukemic cells were pre-fractionated into five subproteomes after multiplexing but prior to DIGE. Under these conditions, 2-D DIGE resolved >5000 protein-containing spots within the pH range 4.6-7.0. Differential labeling combined with subsequent MALDI-MS/MS identified proteins that were differentially expressed in leukemic cells. This analysis mapped protein identities to 128 mesenchymal progenitor cell proteins with at least one unique peptide match at >95% confidence. Of these proteins, 72 (56%) were expressed more than 1.25-fold higher or lower in leukemic cells compared with normal cells (p<0.05). These data were used to infer gene ontology biological processes that may be altered in leukemic bone marrow mesenchymal progenitor cells.  相似文献   

16.

Objective

The ability to predict responses to chemotherapy for serous epithelial ovarian cancer (EOC) would be valuable since intrinsically chemoresistant EOC patients (persistent or recurrent disease within 6 months) gain little benefit from standard chemotherapy. The aim of this study was to screen and identify distinctive biomarkers in ascites of serous EOC associated with intrinsic chemoresistance.

Methods

Protein samples from ascites of 12 chemosensitive and 7 intrinsically chemoresistant serous EOC patients were analyzed using two-dimensional fluorescence difference in gel electrophoresis (2-D DIGE) coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Furthermore, the identified proteins were validated by ELISA in ascites samples from 19 chemosensitive and 9 intrinsically chemoresistant EOC patients.

Results

The number of spots detected in all 2-D DIGE gels ranged from 1523–1711 using DeCyder software analysis. Thirty-four spots were differentially expressed based on the criteria of an average ratio of more than 1.5 and a student t-test P value <0.05. After MALDI-TOF/TOF MS analysis, 11 differentially expressed proteins, including 3 up-regulated and 8 down-regulated proteins, in ascites of chemoresistant tumors were successfully identified. Of the four selected proteins (ceruloplasmin, apoliprotein A-IV, transthyretin and haptoglobin) in ascites tested by ELISA, only ceruloplasmin was present at significantly different levels between the chemoresistant and chemosensitive ascites samples with average concentrations of 192.2 µg/ml and 157.5 µg/ml, respectively (P = 0.001).

Conclusion

The significantly up-regulated level of ceruloplasmin in the ascites fluid of intrinsic chemoresistant serous EOC patients suggests its potential as a prognostic biomarker for responses to chemotherapy. This finding prompts further investigation with a larger study in order to validate the clinical utility of ceruloplasmin.  相似文献   

17.
The reproducibility of conventional two-dimensional (2D) gel electrophoresis can be improved using differential in-gel electrophoresis (DIGE), a new emerging technology for proteomic analysis. In DIGE, two pools of proteins are labeled with 1-(5-carboxypentyl)-1'-propylindocarbocyanine halide (Cy3) N-hydroxy-succinimidyl ester and 1-(5-carboxypentyl)-1'-methylindodi-carbocyanine halide (Cy5) N-hydroxysuccinimidyl ester fluorescent dyes, respectively. The labeled proteins are mixed and separated in the same 2D gel. 2D DIGE was applied to quantify the differences in protein expression between laser capture microdissection-procured esophageal carcinoma cells and normal epithelial cells and to define cancer-specific and normal-specific protein markers. Analysis of the 2D images from protein lysates of approximately 250,000 cancer cells and normal cells identified 1038 protein spots in cancer cell lysates and 1088 protein spots in normal cell lysates. Of the detected proteins, 58 spots were up-regulated by >3-fold and 107 were down-regulated by >3-fold in cancer cells. In addition to previously identified down-regulated protein annexin I, tumor rejection antigen (gp96) was found up-regulated in esophageal squamous cell cancer. Global quantification of protein expression between laser capture-microdissected patient-matched cancer cells and normal cells using 2D DIGE in combination with mass spectrometry is a powerful tool for the molecular characterization of cancer progression and identification of cancer-specific protein markers.  相似文献   

18.
The technique of fluorescent two-dimensional (2D) difference gel electrophoresis for differential protein expression analysis has been evaluated using a model breast cancer cell system of ErbB-2 overexpression. Labeling of paired cell lysate samples with N-hydroxy succinimidyl ester-derivatives of fluorescent Cy3 and Cy5 dyes for separation on the same 2D gel enabled quantitative, sensitive, and reproducible differential expression analysis of the cell lines. SyproRuby staining was shown to be a highly sensitive and 2D difference gel electrophoresis-compatible method for post-electrophoretic visualization of proteins, which could then be picked and identified by matrix-assisted laser-desorption ionization mass spectroscopy. Indeed, from these experiments, we have identified multiple proteins that are likely to be involved in ErbB-2-mediated transformation. A triple dye labeling methodology was used to identify proteins differentially expressed in the cell system over a time course of growth factor stimulation. A Cy2-labeled pool of samples was used as a standard with all Cy3- and Cy5-labeled sample pairs to facilitate cross-gel quantitative analysis. DeCyder (Amersham Biosciences, Inc.) software was used to distinguish clear statistical differences in protein expression over time and between the cell lines.  相似文献   

19.
Krogh M  Liu Y  Waldemarson S  Valastro B  James P 《Proteomics》2007,7(23):4235-4244
Differential in-gel electrophoresis (DIGE) experiments allow three protein samples to be run per gel. The three samples are labeled with the spectrally resolvable fluorescent dyes, Cy2, Cy3, and Cy5, respectively. Here, we show that protein-specific dye effects exist, and we present a linear mixed model for analysis of DIGE data which takes dye effects into account. A Java implementation of the model, called DIGEanalyzer, is freely available at http://bioinfo.thep.lu.se/digeanalyzer.html. Three DIGE experiments from our laboratory, with 173, 64, and 24 gels, respectively, were used to quantify and verify the dye effects. DeCyder 5.0 and 6.5 were used for spot detection and matching. The fractions of proteins with a statistically significant (0.001 level) dye effect were 19, 34, and 23%, respectively. The fractions of proteins with a dye effect above 1.4-fold change were 1, 4, and 6%, respectively. The median magnitude of the dye effect was 1.07-fold change for Cy5 versus Cy3 and 1.16-fold change for Cy3 versus Cy2. The maximal dye effect was a seven-fold change. The dye effects of spots corresponding to the same protein tend to be similar within each of the three experiments, and to a smaller degree across experiments.  相似文献   

20.
Renal cell carcinoma (RCC), the most common neoplasm affecting the adult kidney, is characterised by heterogeneity of histological subtypes, drug resistance, and absence of molecular markers. Two-dimensional difference gel electrophoresis (2-D DIGE) technology in combination with mass spectrometry (MS) was applied to detect differentially expressed proteins in 20 pairs of RCC tissues and matched adjacent normal kidney cortex (ANK), in order to search for RCC markers. After gel analysis by DeCyder 6.5 and EDA software, differentially expressed protein spots were excised from Deep Purple stained preparative 2DE gel. A total of 100 proteins were identified by MS out of 2500 spots, 23 and 77 of these were, respectively, over- and down-expressed in RCC. The Principal Component Analysis applied to gels and protein spots exactly separated the two sample classes in two groups: RCC and ANK. Moreover, some spots, including ANXA2, PPIA, FABP7 and LEG1, resulted highly differential. The DIGE data were also confirmed by immunoblotting analysis for these proteins. In conclusion, we suggest that applying 2-D DIGE to RCC may provide the basis for a better molecular characterization and for the discovery of candidate biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号