首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elongation Factor P (EF-P) is an essential component of bacterial protein synthesis, enhancing the rate of translation by facilitating the addition of amino acids to the growing peptide chain. Using purified Staphylococcus aureus EF-P and a reconstituted Escherichia coli ribosomal system, an assay monitoring the addition of radiolabeled N-formyl methionine to biotinylated puromycin was developed. Reaction products were captured with streptavidin-coated scintillation proximity assay (SPA) beads and quantified by scintillation counting. Data from the assay were used to create a kinetic model of the reaction scheme. In this model, EF-P binding to the ribosome essentially doubled the rate of the ribosomal peptidyl transferase reaction. As described here, EF-P bound to the ribosomes with an apparent K(a) of 0.75 microM, and the substrates N-fMet-tRNA and biotinylated puromycin had apparent K(m)s of 19 microM and 0.5 microM, respectively. The assay was shown to be sensitive to a number of antibiotics known to target ribosomal peptide bond synthesis, such as chloramphenicol and puromycin, but not inhibitors that target other stages of protein synthesis, such as fusidic acid or thiostrepton.  相似文献   

2.
Cancer stem cells (CSCs) have several distinctive characteristics, including high metastatic potential, tumor-initiating potential, and properties that resemble normal stem cells such as self-renewal, differentiation, and drug efflux. Because of these characteristics, CSC is regarded to be responsible for cancer progression and patient prognosis. In our previous study, we showed that a ubiquitin E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) suppressed breast cancer malignancy. Moreover, a recent clinical study reported that CHIP expression levels were associated with favorable prognostic parameters of patients with breast cancer. Here we show that CHIP suppresses CSC properties in a population of breast cancer cells. CHIP depletion resulted in an increased proportion of CSCs among breast cancers when using several assays to assess CSC properties. From our results, we propose that inhibition of CSC properties may be one of the functions of CHIP as a suppressor of cancer progression.  相似文献   

3.
The antibody trastuzumab (Herceptin) has substantially improved overall survival for patients with aggressive HER2-positive breast cancer. However, about 70% of all treated patients will experience relapse or disease progression. This may be related to an insufficient targeting of the CD44highCD24low breast cancer stem cell subset, which is not only highly resistant to chemotherapy and radiotherapy but also a poor target for trastuzumab due to low HER2 surface expression. Hence, we explored whether the new antibody-drug conjugate T-DM1, which consists of the potent chemotherapeutic DM1 coupled to trastuzumab, could improve the targeting of these tumor-initiating or metastasis-initiating cells. To this aim, primary HER2-overexpressing tumor cells as well as HER2-positive and HER2-negative breast cancer cell lines were treated with T-DM1, and effects on survival, colony formation, gene and protein expression as well as antibody internalization were assessed. This revealed that CD44highCD24lowHER2low stem cell-like breast cancer cells show high endocytic activity and are thus particularly sensitive towards the antibody-drug conjugate T-DM1. Consequently, preexisting CD44highCD24low cancer stem cells were depleted by concentrations of T-DM1 that did not affect the bulk of the tumor cells. Likewise, colony formation was efficiently suppressed. Moreover, when tumor cells were cocultured with natural killer cells, antibody-dependent cell-mediated cytotoxicity was enhanced, and EMT-mediated induction of stem cell-like properties was prevented in differentiated tumor cells. Thus our study reveals an unanticipated targeting of stem cell-like breast cancer cells by T-DM1 that may contribute to the clinical efficacy of this recently approved antibody-drug conjugate.  相似文献   

4.
Chemotherapy is widely used in colorectal cancer (CRC) treatment, especially in advanced stage patients. However, it is inevitable to develop chemoresistance. Recently, cancer cells acquired stem cell-like properties or cancer stem cells (CSC) were proved to attribute to chemoresistance. Here, we found that KIN protein was elevated in CRC cell lines and tissue specimens as compared to normal controls. Upregulation of KIN positively correlates with the metastatic status of CRC patients. Patients with high KIN expression showed poor prognosis and were with a short survival time. Overexpression of KIN enhanced, while silencing KIN impaired, chemoresistance to oxaliplatin (Ox) or 5-fluorouracil (5-FU) in CRC cell lines. Further investigation demonstrated that overexpression of KIN rendered CRC cells enriching CSC markers and CSC phenotype, and silencing KIN reduced CSC markers and CSC phenotype. Our findings suggest that the KIN level may be a suitable marker for predicting chemotherapy response in CRC, and silencing KIN plus chemotherapy may be a novel therapy for CRC treatment.  相似文献   

5.
In the haloarchaea Haloferax volcanii, ribosomes are found in the cytoplasm and membrane-bound at similar levels. Transformation of H. volcanii to express chimeras of the translocon components SecY and SecE fused to a cellulose-binding domain substantially decreased ribosomal membrane binding, relative to non-transformed cells, likely due to steric hindrance by the cellulose-binding domain. Treatment of cells with the polypeptide synthesis terminator puromycin, with or without low salt washes previously shown to prevent in vitro ribosomal membrane binding in halophilic archaea, did not lead to release of translocon-bound ribosomes, indicating that ribosome release is not directly related to the translation status of a given ribosome. Release was, however, achieved during cell starvation or stationary growth, pointing at a regulated manner of ribosomal release in H. volcanii. Decreased ribosomal binding selectively affected membrane protein levels, suggesting that membrane insertion occurs co-translationally in Archaea. In the presence of chimera-incorporating sterically hindered translocons, the reduced ability of ribosomes to bind in the transformed cells modulated protein synthesis rates over time, suggesting that these cells manage to compensate for the reduction in ribosome binding. Possible strategies for this compensation, such as a shift to a post-translational mode of membrane protein insertion or maintained ribosomal membrane-binding, are discussed.  相似文献   

6.
High rates of inherent primary resistance to the humanized monoclonal antibody trastuzumab (Herceptin) are frequent among HER2 gene-amplified breast carcinomas in both metastatic and adjuvant settings. The clinical efficacy of trastuzumab is highly correlated with its ability to specifically and efficiently target HER2-driven populations of breast cancer stem cells (CSCs). Intriguingly, many of the possible mechanisms by which cancer cells escape trastuzumab involve many of the same biomarkers that have been implicated in the biology of CS-like tumor-initiating cells. In the traditional, one-way hierarchy of CSCs in which all cancer cells descend from special self-renewing CSCs, HER2-positive CSCs can occur solely by self-renewal. Therefore, by targeting CSC self-renewal and resistance, trastuzumab is expected to induce tumor shrinkage and further reduce breast cancer recurrence rates when used alongside traditional therapies. In a new, alternate model, more differentiated non-stem cancer cells can revert to trastuzumab-refractory, CS-like cells via the activation of intrinsic or microenvironmental paths-to-stemness, such as the epithelial-to-mesenchymal transition (EMT). Alternatively, stochastic transitions of trastuzumab-responsive CSCs might also give rise to non-CSC cellular states that lack major attributes of CSCs and, therefore, can remain “hidden” from trastuzumab activity. Here, we hypothesize that a better understanding of the CSC/non-CSC social structure within HER2-overexpressing breast carcinomas is critical for trastuzumab-based treatment decisions in the clinic. First, we decipher the biological significance of CSC features and the EMT on the molecular effects and efficacy of trastuzumab in HER2-positive breast cancer cells. Second, we reinterpret the genetic heterogeneity that differentiates trastuzumab-responders from non-responders in terms of CSC cellular states. Finally, we propose that novel predictive approaches aimed at better forecasting early tumor responses to trastuzumab should identify biological determinants that causally underlie the intrinsic flexibility of HER2-positive CSCs to “enter” into or “exit” from trastuzumab-sensitive states. An accurate integration of CSC cellular states and EMT-related biomarkers with the currently available breast cancer molecular taxonomy may significantly improve our ability to make a priori decisions about whether patients belonging to HER2 subtypes differentially enriched with a “mesenchymal transition signature” (e.g., luminal/HER2 vs. basal/HER2) would distinctly benefit from trastuzumab-based therapy ab initio.  相似文献   

7.
8.
Identification of small molecular weight compounds targeting specific sites in the ribosome can accelerate development of new antibiotics and provide new tools for ribosomal research. We demonstrate here that antibiotic-size short peptides capable of inhibiting protein synthesis can be selected by using specific elements of ribosomal RNA as a target. The ‘h18’ pseudoknot encompassing residues 500-545 of the small ribosomal subunit RNA was used as a target in screening a heptapeptide phage-display library. Two of the selected peptides could efficiently interfere with both bacterial and eukaryotic translation. One of these inhibitory peptides exhibited a high-affinity binding to the isolated small ribosomal subunit (Kd of 1.1 μM). Identification of inhibitory peptides that likely target a specific rRNA structure may pave new ways for validating new antibiotic sites in the ribosome. The selected peptides can be used as a tool in search of novel site-specific inhibitors of translation.  相似文献   

9.
核糖体蛋白质与核糖体RNA共同组成了核糖体,是合成蛋白质的细胞器。除参与蛋白质合成,核糖体蛋白质还具有广泛的核糖体外功能,如独立于核糖体外发挥调控基因转录、mRNA翻译、细胞的增殖、分化和凋亡等等。基于诸多的核糖体外功能,核糖体蛋白质与人类疾病密切相关,例如在先天性贫血、生长发育不全和肿瘤的发生发展过程中均发挥重要作用。本文对近年来核糖体蛋白质的核糖体外新功能及其相关疾病的研究进展作一综述。  相似文献   

10.
During protein synthesis, interactions between the decoding center of the ribosome and the codon-anticodon complexes maintain translation accuracy. Correct aminoacyl-tRNAs induce the ribosome to shift into a "closed" conformation that both blocks tRNA dissociation and accelerates the process of tRNA acceptance. As part of the ribosomal recognition of cognate tRNAs, the rRNA nucleotides G530 and A1492 form a hydrogen-bonded pair that interacts with the middle position of the codon.anticodon complex and recognizes correct Watson-Crick base pairs. Exchanging these two nucleotides (A530 and G1492) would not disrupt these interactions, suggesting that such a double mutant ribosome might properly recognize tRNAs and support viability. We find, however, that exchange mutants retain little ribosomal activity. We suggest that even though the exchanged nucleotides might function properly during tRNA recruitment, they might disrupt one or more other functions of the nucleotides during other stages of protein synthesis.  相似文献   

11.
Cancer stem cells: the lessons from pre-cancerous stem cells   总被引:1,自引:0,他引:1  
How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of "clonal evolution" for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of precancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the "clonal evolution" is not contradictory to the CSC hypothesis, but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respects to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumor stromal components such as tumor vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumor-initiating cells (TIC) --> pCSC --> CSC --> cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) --> precancerous lesions (pCSC) --> malignant lesions (CSC --> cancer). The embryonic stem (ES) cell and germline stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC --> pCSC --> CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC can not be made at this time. However this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer.  相似文献   

12.
近年来,肿瘤干细胞学说作为肿瘤发生发展的重要原因获得越来越多的认可。肿瘤干细胞是指肿瘤中存在的含量极少、具有无限增殖潜能的干细胞样肿瘤细胞,它们能自我更新、分化、迁徙,是导致肿瘤发生、发展、转移和耐药的重要原因。卵巢癌也可能是卵巢癌干细胞所致的疾病。卵巢癌干细胞的分离鉴定正处于起始阶段,针对卵巢癌干细胞的靶向治疗可能在卵巢癌治疗中具有重要作用,为临床彻底治愈卵巢癌带来希望。  相似文献   

13.
In cancerous cells, physiologically tight regulation of protein synthesis is lost, contributing to uncontrolled growth and proliferation. We describe a novel experimental cancer therapy approach based on genetically recombinant poliovirus that targets an intriguing aberration of translation control in malignancy. This strategy is based on the confluence of several factors enabling specific and efficacious cancer cell targeting. Poliovirus naturally targets the vast majority of ectodermal/neuroectodermal cancers expressing its cellular receptor. Evidence from glioblastoma patients suggests that the poliovirus receptor is ectopically upregulated on tumor cells and may be associated with stem cell-like cancer cell populations and proliferating tumor vasculature. We exploit poliovirus' reliance on an unorthodox mechanism of protein synthesis initiation to selectively drive viral translation, propagation and cytotoxicity in glioblastoma. PVSRIPO, a prototype nonpathogenic poliovirus recombinant, is scheduled to enter clinical investigation against glioblastoma.  相似文献   

14.
牛畅  叶棋浓 《生物技术通讯》2010,21(5):731-735,739
肿瘤干细胞既包含干细胞的特性也包含肿瘤细胞的特性。乳腺癌起源于乳腺癌干细胞的说法能够合理地解释乳腺癌的不均一性及其治疗后的复发,这些变异的干细胞可能作为肿瘤预防策略的靶标。而且,由于乳腺癌干细胞能够抵抗辐射治疗和化学治疗,所以要想更好地治疗乳腺癌就需要寻找针对这些干细胞的靶标。我们综述了乳腺癌干细胞的发现、富集和分离、相关的信号途径,以及在乳腺癌治疗中的应用。  相似文献   

15.
16.
17.
18.
19.
Relapse cases of cancers are more vigorous and difficult to control due to the preponderance of cancer stem cells (CSCs). Such CSCs that had been otherwise dormant during the first incidence of cancer gradually appear as radiochemoresistant cancer cells. Hence, cancer therapeutics aimed at CSCs would be an effective strategy for mitigating the cancers during relapse. Alternatively, CSC therapy can also be proposed as an adjuvant therapy, along‐with the conventional therapies. As regenerative stem cells (RSCs) are known for their trophic effects, anti‐tumorogenicity, and better migration toward an injury site, this review aims to address the use of adult stem cells such as dental pulp derived; cord blood derived pure populations of regenerative stem cells for targeting CSCs. Indeed, pro‐tumorogenicity of RSCs is of concern and hence has also been dealt with in relation to breast CSC therapeutics. Furthermore, as notch signaling pathways are upregulated in breast cancers, and anti‐notch antibody based and sh‐RNA based therapies are already in the market, this review focuses the possibilities of engineering RSCs to express notch inhibitory proteins for breast CSC therapeutics. Also, we have drawn a comparison among various possibilities of breast CSC therapeutics, about, notch1 inhibition. J. Cell. Biochem. 119: 141–149, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号