首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The proliferation rate of a cell population reflects a balance between cell division, cell cycle arrest, differentiation and apoptosis. The regulation of these processes is central to development and tissue homeostasis, whereas dysregulation may lead to overt pathological outcomes, notably cancer and neurodegenerative disorders. We report here the cloning of a novel zinc finger protein which regulates apoptosis and cell cycle arrest and was accordingly named Zac1. In vitro Zac1 inhibited proliferation of tumor cells, as evidenced by measuring colony formation, growth rate and cloning in soft agar. In vivo Zac1 abrogated tumor formation in nude mice. The antiproliferative activity of Zac1 was due to induction of extensive apoptosis and of G1 arrest, which proceeded independently of retinoblastoma protein and of regulation of p21(WAF1/Cip1), p27Kip1, p57Kip2 and p16INK4a expression. Zac1-mediated apoptosis was unrelated to cell cycle phase and G1 arrest was independent of apoptosis, indicating separate control of apoptosis and cell cycle arrest. Zac1 is thus the first gene besides p53 which concurrently induces apoptosis and cell cycle arrest.  相似文献   

3.
Neutrophil elastase (NE), a serine protease present in high concentrations in the airways of cystic fibrosis patients, injures the airway epithelium. We examined the epithelial response to NE-mediated proteolytic injury. We have previously reported that NE treatment of airway epithelial cells causes a marked decrease in epithelial DNA synthesis and proliferation. We hypothesized that NE inhibits DNA synthesis by arresting cell cycle progression. Progression through the cell cycle is positively regulated by cyclin complexes and negatively regulated by cyclin-dependent kinase inhibitors (CKI). To test whether NE arrests cell cycle progression, we treated normal human bronchial epithelial (NHBE) cells with NE (50 nM) or control vehicle for 24 h and assessed the effect of treatment on the cell cycle by flow cytometry. NE treatment resulted in G(1) arrest. Arrest in G(1) phase may be the result of CKI inhibition of the cyclin E complex; therefore, we evaluated whether NE upregulated CKI expression and/or affected the interaction of CKIs with the cyclin E complex. Following NE or control vehicle treatment, expression of p27(Kip1), a member of the Cip/Kip family, was evaluated. NE increased p27(Kip1) gene and protein expression. NE increased the coimmunoprecipitation of p27(Kip1) with cyclin E complex, suggesting that p27(Kip1) inhibited cyclin E complex activity. Our results demonstrate that p27 is regulated by NE and is critical for NE-induced cell cycle arrest.  相似文献   

4.
Control over cell cycle exit is fundamental to the normal generation of the wide array of distinct cell types that comprise the mature vertebrate CNS. Here, we demonstrate a critical role for Cip/Kip class cyclin-kinase inhibitory (CKI) proteins in regulating this process during neurogenesis in the embryonic spinal cord. Using immunohistochemistry, we show that all three identified Cip/Kip CKI proteins are expressed in both distinct and overlapping populations of nascent and post-mitotic neurons during early neurogenesis, with p27(Kip1) having the broadest expression, and both p57(Kip2) and p21(Cip1) showing transient expression in restricted populations. Loss- and gain-of-function approaches were used to establish the unique and redundant functions of these proteins in spinal cord neurogenesis. Using genetic lineage tracing, we provide evidence that, in the absence of p57, nascent neurons re-enter the cell cycle inappropriately but later exit to begin differentiation. Analysis of p57(Kip2);p27(Kip1) double mutants, where p21 expression is confined to only a small population of interneurons, demonstrates that Cip/Kip CKI-independent factors initiate progenitor cell cycle exit for the majority of interneurons generated in the developing spinal cord. Our studies indicate that p57 plays a critical cell-autonomous role in timing cell cycle exit at G1/S by opposing the activity of Cyclin D1, which promotes cell cycle progression. These studies support a multi-step model for neuronal progenitor cell cycle withdrawal that involves p57(Kip2) in a central role opposing latent Cyclin D1 and other residual cell cycle promoting activities in progenitors targeted for differentiation.  相似文献   

5.
6.
p57Kip2, one of the cyclin-dependent kinase (CDK) inhibitors, has been suggested to be a tumor suppressor candidate. To elucidate its biological roles in mouse development and tumorigenesis, we created p57Kip2-deficient mice. The p57Kip2-deficient mice exhibited a cleft palate and defective bone formation resulting in severe dyspnea. Most of the p57Kip2-deficient mice died within 24 h after birth, while about 10% of them survived beyond the weaning period. All of the surviving mice showed severe growth retardation. The males showed immaturity of the testes, prostate and seminal vesicles, and the females showed vaginal atresia, immaturity of the uterus, and an increased number of atretic follicles. Although Yan et al. and Zhang et al. have already reported p57Kip2-deficient mice, they could not investigate the phenotypes of the surviving p57Kip2-deficient mice. Also, most of the symptoms of Beckwith-Wiedemann syndrome could not be reproduced in the mutant mice. Embryonic fibroblasts prepared from p57Kip2-deficient mice showed no differences in the proliferation rate and saturation density, suggesting that G1 arrest is largely independent of p57Kip2 function. Our results suggest that p57Kip2 plays a critical role in development, but do not support the hypothesis that the p57Kip2 gene is a tumor-suppressor gene or is responsible for Beckwith-Wiedemann syndrome.  相似文献   

7.
As a member of the CIP/KIP family of cyclin-dependent kinase inhibitors (CKIs), p57Kip2 binds tightly to G1 cyclin/cyclin-dependent kinase complexes to block cell cycle progression. CKIs play critical roles in regulating the transition from proliferation to differentiation in many tissues, including the nervous system. Conversely, CKI dys-regulation contributes to neoplasia and cancer progression. While the combined detection of CKI immunoreactivity and S phase entry using bromodeoxyuridine (BrdU) incorporation may be particularly informative, successful immunostaining may be limited due to “masked” antigen epitopes and acid-induced signal degradation. We now report an improved double immunofluorescent method for detecting p57Kip2 and BrdU in paraformaldehyde-fixed frozen sections of embryonic rat brain. We substituted deoxyribonuclease I (DNAse I) for HCl pre-treatment to expose antigenic sites in frozen sections, and employed a biotinylated tyramide-based system to enhance p57Kip2 visualization. We identified a time- and dose-dependent relationship between DNAse I treatment and double labeling of p57Kip2 and BrdU, increasing both the numbers and intensities of immunopositive nuclei. With excess DNAse I treatment, however, there was signal degradation for both BrdU and total DNA, as reflected by DAPI staining. The use of DNAse I pre-treatment significantly increases the reliability and sensitivity of immunodetection of CKI nuclear factors, and should be useful for both developmental neurobiology studies as well as cancer diagnostic applications.  相似文献   

8.
9.
In response to ionizing radiation (IR), the tumor suppressor p53 is stabilized and promotes either cell cycle arrest or apoptosis. Chk2 activated by IR contributes to this stabilization, possibly by direct phosphorylation. Like p53, Chk2 is mutated in patients with Li-Fraumeni syndrome. Since the ataxia telangiectasia mutated (ATM) gene is required for IR-induced activation of Chk2, it has been assumed that ATM and Chk2 act in a linear pathway leading to p53 activation. To clarify the role of Chk2 in tumorigenesis, we generated gene-targeted Chk2-deficient mice. Unlike ATM(-/-) and p53(-/-) mice, Chk2(-/-) mice do not spontaneously develop tumors, although Chk2 does suppress 7,12-dimethylbenzanthracene-induced skin tumors. Tissues from Chk2(-/-) mice, including those from the thymus, central nervous system, fibroblasts, epidermis, and hair follicles, show significant defects in IR-induced apoptosis or impaired G(1)/S arrest. Quantitative comparison of the G(1)/S checkpoint, apoptosis, and expression of p53 proteins in Chk2(-/-) versus ATM(-/-) thymocytes suggested that Chk2 can regulate p53-dependent apoptosis in an ATM-independent manner. IR-induced apoptosis was restored in Chk2(-/-) thymocytes by reintroduction of the wild-type Chk2 gene but not by a Chk2 gene in which the sites phosphorylated by ATM and ataxia telangiectasia and rad3(+) related (ATR) were mutated to alanine. ATR may thus selectively contribute to p53-mediated apoptosis. These data indicate that distinct pathways regulate the activation of p53 leading to cell cycle arrest or apoptosis.  相似文献   

10.
In many tissues, progenitor cells permanently withdraw from the cell cycle prior to commitment towards a differentiated phenotype. In the oligodendrocyte lineage a counting mechanism has been proposed, linking the number of cell divisions to growth arrest and differentiation. A direct prediction of this model is that an increase in the number of cell divisions would result in a delayed onset of differentiation. Since the cell cycle inhibitor p27Kip1 is an essential component of the machinery leading to oligodendrocyte progenitor growth arrest, we examined the temporal relationship between cell cycle withdrawal and expression of late differentiation markers in vivo, in mice carrying a targeted deletion in the p27Kip1 gene. Using bromodeoxyuridine to label proliferating cells, quaking (QKI) to identify embryonic glial progenitors, NG2 to identify neonatal oligodendrocyte progenitors, and myelin basic protein to label differentiated oligodendrocytes, we found an increased number of proliferating QKI- and NG2-positive cells in germinal zones of p27Kip1(-/-) mice at the peak of gliogenesis. However, no delay was observed in these mice in the appearance of the late differentiation marker myelin basic protein in the developing corpus callosum and cerebellum. Significantly, a decrease in cyclin E levels was observed in the brain of p27Kip1 null mice coincident with oligodendrocyte growth arrest. We conclude that two distinct modalities of growth arrest occur in the oligodendrocyte lineage: a p27Kip1-dependent mechanism of growth arrest affecting proliferation in early phases of gliogenesis, and a p27Kip1-independent event leading to withdrawal from the cell cycle and differentiation.  相似文献   

11.
Although it is evident that BCR-ABL can rescue cytokine-deprived hematopoietic progenitor cells from cell cycle arrest and apoptosis, the exact mechanism of action of BCR/ABL and interleukin (IL)-3 to promote proliferation and survival has not been established. Using the pro-B cell line BaF3 and a BaF3 cell line stably overexpressing BCR-ABL (BaF3-p210), we investigated the proliferative signals derived from BCR-ABL and IL-3. The results indicate that both IL-3 and BCR-ABL target the expression of cyclin Ds and down-regulation of p27(Kip1) to mediate pRB-related pocket protein phosphorylation, E2F activation, and thus S phase progression. These findings were further confirmed in a BaF3 cell line (TonB.210) where the BCR-ABL expression is inducible by doxycyclin and by using the drug STI571 to inactivate BCR-ABL activity in BaF3-p210. To establish the functional significance of cyclin D2 and p27(Kip1) expression in response to IL-3 and BCR-ABL expression, we studied the effects of ectopic expression of cyclin D2 and p27(Kip1) on cell proliferation and survival. Our results demonstrate that both cyclin D2 and p27(Kip1) have a role in BaF3 cell proliferation and survival, as ectopic expression of cyclin D2 is sufficient to abolish the cell cycle arrest and apoptosis induced by IL-3 withdrawal or by BCR-ABL inactivation, while overexpression of p27(Kip1) can cause cell cycle arrest and apoptosis in the BaF3 cells. Furthermore, our data also suggest that cyclin D2 functions upstream of p27(Kip1), cyclin E, and cyclin D3, and therefore, plays an essential part in integrating the signals from IL-3 and BCR-ABL with the pRB/E2F pathway.  相似文献   

12.
The cyclin-dependent kinase (CDK) inhibitor p57Kip2 is a negative regulator of cell proliferation, binding to a variety of cyclin-CDK complexes and inhibiting their kinase activities. The p57Kip2 gene was recognized as a target gene for p73β, one member of the p53 family. In spite of this, the phenotypes of p73 and p57Kip2 knock out mice do not resemble each other while there is a phenotypic overlap betweeen the p57Kip2 null mice, the p63 null mice and patients affected by p63 associated syndromes, suggesting that p57Kip2 could be indeed a downstream target of p63. By ChIP we determined that in the HaCaT cell line the δNp63α protein is associated to three different regions of the p57Kip2 gene. δNp63 can activate both the endogenous p57Kip2 gene and a reporter vector containing a -2191 promoter fragment of the p57Kip2 gene. Natural p63 mutants, associated to the AEC syndrome, show a partial or complete lack of transactivation potential of the p57Kip2 promoter, while three other natural p63 mutants, associated to the EEC, LMS and SHFM-4 syndromes, were less affected. These data suggests that p63 play an important role in the regulation of p57Kip2 expression and that this regulation is subverted in AEC p63 mutants.  相似文献   

13.
14.
Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27(Kip1) in the absence of p53. This study found that MRPL41 mediates the p21(WAF1/CIP1)-mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21(WAF1/CIP1) and p27(Kip1) levels under the growth inhibitory conditions.  相似文献   

15.
Myc and E2f1 promote cell cycle progression, but overexpression of either can trigger p53-dependent apoptosis. Mice expressing an Emu-Myc transgene in B lymphocytes develop lymphomas, the majority of which sustain mutations of either the Arf or p53 tumor suppressors. Emu-Myc transgenic mice lacking one or both E2f1 alleles exhibited a slower onset of lymphoma development associated with increased expression of the cyclin-dependent kinase inhibitor p27(Kip1) and a reduced S phase fraction in precancerous B cells. In contrast, Myc-induced apoptosis and the frequency of Arf and p53 mutations in lymphomas were unaffected by E2f1 loss. Therefore, Myc does not require E2f1 to induce Arf, p53, or apoptosis in B cells, but depends upon E2f1 to accelerate cell cycle progression and downregulate p27(Kip1).  相似文献   

16.
17.
18.
A precise balance between proliferation and differentiation must be maintained during retinal development to obtain the correct proportion of each of the seven cell types found in the adult tissue. Cyclin kinase inhibitors can regulate cell cycle exit coincident with induction of differentiation programs during development. We have found that the p57(Kip2) cyclin kinase inhibitor is upregulated during G(1)/G(0) in a subset of retinal progenitor cells exiting the cell cycle between embryonic day 14.5 and 16.5 of mouse development. Retroviral mediated overexpression of p57(Kip2) in embryonic retinal progenitor cells led to premature cell cycle exit. Retinae from mice lacking p57(Kip2) exhibited inappropriate S-phase entry and apoptotic nuclei were found in the region where p57(Kip2) is normally expressed. Apoptosis precisely compensated for the inappropriate proliferation in the p57(Kip2)-deficient retinae to preserve the correct proportion of the major retinal cell types. Postnatally, p57(Kip2) was found to be expressed in a novel subpopulation of amacrine interneurons. At this stage, p57(Kip2 )did not regulate proliferation. However, perhaps reflecting its role during this late stage of development, animals lacking p57(Kip2) showed an alteration in amacrine subpopulations. p57(Kip2) is the first gene to be implicated as a regulator of amacrine subtype/subpopulation development. Consequently, we propose that p57(Kip2) has two roles during retinal development, acting first as a cyclin kinase inhibitor in mitotic progenitor cells, and then playing a distinct role in neuronal differentiation.  相似文献   

19.
Induction of p53 gene expression in cancer cells can lead to both cell cycle arrest and apoptosis. To clarify whether the level of p53 expression determines the apoptotic response of hepatocellullar carcinoma (HCC) cells, we assessed the effect of various levels of expression of p53 gene on a p53-deficient HCC cell line, Hep3B, utilizing a doxycycline (Dox)-regulated inducible p53 expression system. Our results showed that apoptosis was induced in HCC cells with high levels of p53 expression. However, lower level of p53 expression induced only cell cycle arrest but not apoptosis. Bax expression was up-regulated following high levels of p53 expression, while bcl-2 expression was not altered by the level of p53 expression. Moreover, p21 expression was observed in both high and low expression of p53. These results suggest the level of p53 expression could determine if the HCC cells would go into cell cycle arrest or apoptosis. Bax may participate, at least in part, in inducing p53-dependent apoptosis and the induction of p21 alone was able to cause cell cycle arrest but not apoptosis.  相似文献   

20.
Alpha-tocopheryl succinate (alpha-TOS), a redox-inactive analog of vitamin E, induces cell cycle arrest, differentiation, and triggers apoptosis. We examined the ability of alpha-TOS to induce cytostasis and/or apoptosis in two human osteosarcoma cell lines, which carry wild-type pRb but differ in the p53 status. In the wt-p53 cells, alpha-TOS induced apoptosis, which was associated with p53 activation and enhanced E2F1 expression. Mutant p53 cells failed to undergo apoptosis when challenged with alpha-TOS. The cell growth arrest after alpha-TOS treatment was associated with a reduced expression of E2F1. Knocking down E2F1 rendered the alpha-TOS-sensitive cells rather resistant to the apoptotic stimulus inducing a marked and prolonged cell growth arrest. We conclude that alpha-TOS induces cell growth arrest or apoptosis involving E2F1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号