首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Phylogenetic diversity of lichen photobionts is low compared to that of fungal counterparts. Most lichen fungi are thought to be associated with just four photobiont genera, among them the cyanobacteria Nostoc and Scytonema, two of the most important nitrogen fixers in humid ecosystems. Although many Nostoc photobionts have been identified using isolated cultures and sequences, the identity of Scytonema photobionts has never been confirmed by culturing or sequencing. We investigated the phylogenetic placement of presumed Scytonema photobionts and unicellular morphotypes previously assigned to Chroococcus, from tropical Dictyonema, Acantholichen, Coccocarpia, and Stereocaulon lichens. While we confirm that filamentous and unicellular photobiont morphotypes belong to a single clade, this clade does not cluster with Scytonema but represents a novel, previously unrecognized, highly diverse, exclusively lichenized lineage, for which the name Rhizonema is available. The phylogenetic structure observed in this novel lineage suggests absence of coevolution with associated mycobionts at the species or clade level. Instead, highly efficient photobiont strains appear to have evolved through photobiont sharing between unrelated, but ecologically similar, coexisting lineages of lichenized fungi ("lichen guilds"), via the selection of particular photobiont strains through and subsequent horizontal transfer among unrelated mycobionts, a phenomenon not unlike crop domestication.  相似文献   

2.
Lichens are symbioses between fungi (mycobionts) and photoautotrophic green algae or cyanobacteria (photobionts). Many lichens occupy large distributional ranges covering several climatic zones. So far, little is known about the large‐scale phylogeography of lichen photobionts and their role in shaping the distributional ranges of lichens. We studied south polar, temperate and north polar populations of the widely distributed fruticose lichen Cetraria aculeata. Based on the DNA sequences from three loci for each symbiont, we compared the genetic structure of mycobionts and photobionts. Phylogenetic reconstructions and Bayesian clustering methods divided the mycobiont and photobiont data sets into three groups. An amova shows that the genetic variance of the photobiont is best explained by differentiation between temperate and polar regions and that of the mycobiont by an interaction of climatic and geographical factors. By partialling out the relative contribution of climate, geography and codispersal, we found that the most relevant factors shaping the genetic structure of the photobiont are climate and a history of codispersal. Mycobionts in the temperate region are consistently associated with a specific photobiont lineage. We therefore conclude that a photobiont switch in the past enabled C. aculeata to colonize temperate as well as polar habitats. Rare photobiont switches may increase the geographical range and ecological niche of lichen mycobionts by associating them with locally adapted photobionts in climatically different regions and, together with isolation by distance, may lead to genetic isolation between populations and thus drive the evolution of lichens.  相似文献   

3.
Lichens as symbiotic associations consisting of a fungus (the mycobiont) and a photosynthetic partner (the photobiont) dominate the terrestrial vegetation of continental Antarctica. The photobiont provides carbon nutrition for the fungus. Therefore, performance and protection of photosystem II is a key factor of lichen survival. Potentials and limitations of photobiont physiology require intense investigation to extend the knowledge on adaptation mechanisms in the lichen symbiosis and to clarify to which extent photobionts benefit from symbiosis. Isolated photobionts and entire lichen thalli have been examined. The contribution of the photobiont concerning adaptation mechanisms to the light regime and temperature conditions was examined by chlorophyll a fluorescence and pigment analysis focusing on the foliose lichen Umbilicaria decussata from North Victoria Land, continental Antarctica. No photoinhibition has been observed in the entire lichen thallus. In the isolated photobionts, photoinhibition was clearly temperature dependent. For the first time, melanin in U. decussata thalli has been proved. Though the isolated photobiont is capable of excess light protection, the results clearly show that photoprotection is significantly increased in the symbiotic state. The closely related photobiont of Pleopsidium chlorophanum, a lichen lacking melanin, showed a higher potential of carotenoid-based excess light tolerance. This fact discriminates the two photobionts of the same Trebouxia clade. Based on the results, it can be concluded that the successful adaptation of lichens to continental Antarctic conditions is in part based on the physiological potential of the photobionts. The findings provide information on the success of symbiotic life in extreme environments.  相似文献   

4.
Abstract:The identity of photobionts from 20 species of the Physciaceae from different habitats and geographical regions has been determined by ITS rDNA sequence comparisons in order to estimate the diversity of photobionts within that lichen group, to detect patterns of specificity of mycobionts towards their photobionts and as a part of an ongoing study to investigate possible parallel cladogenesis of both symbionts. Algal-specific PCR primers have been used to determine the ITS rDNA sequences from DNA extractions of dried lichens that were up to 5 years old. Direct comparisons and phylogenetic analyses allowed the assignment of Physciaceae photobionts to four distinct clades in the photobiont ITS rDNA phylogeny. The results indicate a diversity within the genus Trebouxia Puymaly and Physciaceae photobionts that is higher than expected on the basis of morphology alone. Physciaceae photobionts belonged to 12 different ITS lineages of which nine could unambiguously be assigned to six morphospecies of Trebouxia. The identity of the remaining three sequences was not clarified; they may represent new species. Specificity at the generic level was low as a whole range of photobiont species were found within a genus of Physciaceae and different ranges were detected. The photobionts ofPhyscia (Schreb.) Michaux were closely related and represented one morphospecies of Trebouxia, whereas the algal partners of Buellia De Not and Rinodina (Ach.) S. Gray were in distant lineages of the ITS phylogeny and from several Trebouxia morphospecies. Photobiont variation within a genus of Physciaceae may be due to phylogeny, geographical distance or because photobionts from neighbouring lichens were taken (‘algal sharing’). At the species level Physciaceae mycobionts seem to be rather selective and contained photobionts that were very closely related within one morphospecies of Trebouxia.  相似文献   

5.
Domestication of algae by lichen‐forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations ( Goward 1992 ). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont ‘selection’ by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction ( Ahmadjian & Jacobs 1981 ) only after the interaction has been initiated. The theory of ecological guilds ( Rikkinen et al. 2002 ) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens ( Rikkinen et al. 2002 ), other studies propose models to explain variation in symbiont combinations in green algal lichens ( Ohmura et al. 2006 ; Piercey‐Normore 2006 ; Yahr et al. 2006 ) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & ?kaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose lichens in the genus Lepraria. Altitude has been suggested to influence species distributions in a wide range of taxonomic groups. This is one of the first studies to illustrate an ecological guild, mainly for exposure to rainfall (ombrophiles and ombrophobes), with green algal lichens.  相似文献   

6.
Little is known about the nature of the association between mycobionts and photobionts in isolated lichen communities. Here we studied the photobiont diversity of different Caloplaca species in a fog-induced community in the Atacama Desert. We compared nrDNA ITS sequences of both symbionts, photobionts and mycobionts, along with morphological characters of the different lichen thalli, to investigate the diversity and to assess the degree of selectivity and specificity of photobiont species in a community of Caloplaca species. Specimens of six fungal species (C. orthoclada, C. fernandeziana, and four undescribed species) were sampled along an altitudinal gradient on a coastal bluff with a strong fog presence, 60 km south of Iquique, Chile. The photobiont species in this community belong to three species of the genus Trebouxia in the strict sense: T. arboricola, T. decolorans, and T. gigantea. Most of the fungal species were lichenized with photobionts belonging to different haplotypes of T. arboricola and T. decolorans, although the algae of three specimens, associated with two fungal species (C. orthoclada and C. sp1), were related to representatives of T. gigantea. These results indicate that members of the genus Caloplaca in northern Chile have moderate photobiont selectivity and appear to be selective to members of the T. arboricola group. Also, at high altitudes, changes in the photobiontal haplotype composition were observed in comparison to lower altitudes, probably generated by a higher water availability given higher fog condensation and precipitation in the upper areas of the bluff. This may suggest that ecological factors, such as altitude and water availability could result in a local shift of the associated photobiont and specialization as a product of local adaptation.  相似文献   

7.

Background and Aims

Cyanolichens are usually stated to be bipartite (mycobiont plus cyanobacterial photobiont). Analyses revealed green algal carbohydrates in supposedly cyanobacterial lichens (in the genera Pseudocyphellaria, Sticta and Peltigera). Investigations were carried out to determine if both cyanobacteria and green algae were present in these lichens and, if so, what were their roles.

Methods

The types of photobiont present were determined by light and fluorescence microscopy. Small carbohydrates were analysed to detect the presence of green algal metabolites. Thalli were treated with selected strengths of Zn2+ solutions that stop cyanobacterial but not green algal photosynthesis. CO2 exchange was measured before and after treatment to determine the contribution of each photobiont to total thallus photosynthesis. Heterocyst frequencies were determined to clarify whether the cyanobacteria were modified for increased nitrogen fixation (high heterocyst frequencies) or were normal, vegetative cells.

Key Results

Several cyanobacterial lichens had green algae present in the photosynthetic layer of the thallus. The presence of the green algal transfer carbohydrate (ribitol) and the incomplete inhibition of thallus photosynthesis upon treatment with Zn2+ solutions showed that both photobionts contributed to the photosynthesis of the lichen thallus. Low heterocyst frequencies showed that, despite the presence of adjacent green algae, the cyanobacteria were not altered to increase nitrogen fixation.

Conclusions

These cyanobacterial lichens are a tripartite lichen symbiont combination in which the mycobiont has two primarily photosynthetic photobionts, ‘co-primary photobionts’, a cyanobacterium (dominant) and a green alga. This demonstrates high flexibility in photobiont choice by the mycobiont in the Peltigerales. Overall thallus appearance does not change whether one or two photobionts are present in the cyanobacterial thallus. This suggests that, if there is a photobiont effect on thallus structure, it is not specific to one or the other photobiont.  相似文献   

8.
Spatial patterns of photobiont diversity in some Nostoc-containing lichens   总被引:3,自引:3,他引:0  
Patterns of photobiont diversity were examined in some Nostoc -containing lichens using the nucleotide sequence of the cyanobacterial tRNALeu (UAA) intron. Lichen specimens collected in northwestern USA were analysed and the sequence data were compared with tRNALeu(UAA) intron sequences previously obtained from lichens in northern Europe. Generally, it is the species identity of a lichen rather than the geographical origin of the specimen that determines the identity of the cyanobiont. Identical intron sequences were found in Peltigera membranacea specimens collected in Oregon (USA) and in Sweden, and very similar sequences were also found in Nephroma resupinatum thalli collected in Oregon and Finland. Furthermore, in mixed assemblages where two Peltigera species grew in physical contact with each other, the different lichen species housed different photobiont strains. There is however not a one-to-one relation between mycobiont and photobiont as some intron sequences were found in more than one lichen species, and different intron sequences were found in different samples of some lichen taxa. Peltigera venosa exhibited a higher level of photobiont diversity than any other lichen species studied, and several intron sequences could for the first time be obtained from a single thallus. It is not clear whether this is evidence of lower cyanobiont specificity, or reflects an ability to exhibit different degrees of lichenization with different Nostoc strains. In one specimen of P. venosa , which contained bipartite cyanosymbiodemes and tripartite, cephalodiate thalli, both thallus types contained the same intron sequence.  相似文献   

9.
The main α-glucan synthesized by lichens of the genera Ramalina in the symbiotic state is isolichenan. This polysaccharide was not found in the aposymbiotically cultivated symbionts. It is still unknown if this glucan is produced by the mycobiont only in the presence of a photobiont, in a lichen thallus, or if the isolichenan suppression is influenced by the composition of culture medium used in its aposymbiotic cultive. Consequently, the latter hypothesis is tested in this study. Cultures of the mycobiont Ramalina complanata were obtained from germinated ascospores and cultivated on 4% glucose Lilly and Barnett medium. Freeze-dried colonies were defatted and their carbohydrates extracted successively with hot water and aqueous 10% KOH, each at 100 °C. The polysaccharides nigeran, laminaran and galactomannan were liberated, along with a lentinan-type β-glucan and a heteropolysaccharide (Man : Gal : Glc, 21 : 28 : 51). Nevertheless, the α-glucan isolichenan was not found in the extracts. It follows that it was probably a symbiotic product, synthesized by the mycobiont only in this particular microenvironment, in the presence of the photobiont in the lichen thallus. A discussion about polysaccharides found in the symbiotic thallus as well as in other aposymbiotic cultivated Ramalina mycobionts is also included.  相似文献   

10.
The large distributional areas and ecological niches of many lichenized fungi may in part be due to the plasticity in interactions between the fungus (mycobiont) and its algal or cyanobacterial partners (photobionts). On the one hand, broad‐scale phylogenetic analyses show that partner compatibility in lichens is rather constrained and shaped by reciprocal selection pressures and codiversification independent of ecological drivers. On the other hand, sub‐species‐level associations among lichen symbionts appear to be environmentally structured rather than phylogenetically constrained. In particular, switching between photobiont ecotypes with distinct environmental preferences has been hypothesized as an adaptive strategy for lichen‐forming fungi to broaden their ecological niche. The extent and direction of photobiont‐mediated range expansions in lichens, however, have not been examined comprehensively at a broad geographic scale. Here we investigate the population genetic structure of Lasallia pustulata symbionts at sub‐species‐level resolution across the mycobiont's Europe‐wide range, using fungal MCM7 and algal ITS rDNA sequence markers. We show that variance in occurrence probabilities in the geographic distribution of genetic diversity in mycobiont‐photobiont interactions is closely related to changes in climatic niches. Quantification of niche extent and overlap based on species distribution modeling and construction of Hutchinsonian climatic hypervolumes revealed that combinations of fungal–algal interactions change at the sub‐species level along latitudinal temperature gradients and in Mediterranean climate zones. Our study provides evidence for symbiont‐mediated niche expansion in lichens. We discuss our results in the light of symbiont polymorphism and partner switching as potential mechanisms of environmental adaptation and niche evolution in mutualisms.  相似文献   

11.
Peksa O  Skaloud P 《Molecular ecology》2011,20(18):3936-3948
The distribution patterns of symbiotic algae are thought to be conferred mainly by their hosts, however, they may originate in algal environmental requirements as well. In lichens, predominantly terrestrial associations of fungi with algae or cyanobacteria, the ecological preferences of photobionts have not been directly studied so far. Here, we examine the putative environmental requirements in lichenized alga Asterochloris, and search for the existence of ecological guilds in Asterochloris-associating lichens. Therefore, the presence of phylogenetic signal in several environmental traits was tested. Phylogenetic analysis based on the concatenated set of internal transcribed spacer rDNA and actin type I intron sequences from photobionts associated with lichens of the genera Lepraria and Stereocaulon (Stereocaulaceae, Ascomycota) revealed 13 moderately to well-resolved clades. Photobionts from particular algal clades were found to be associated with taxonomically different, but ecologically similar lichens. The rain and sun exposure were the most significant environmental factor, clearly distinguishing the Asterochloris lineages. The photobionts from ombrophobic and ombrophilic lichens were clustered in completely distinct clades. Moreover, two photobiont taxa were obviously differentiated based on their substrate and climatic preferences. Our study, thus reveals that the photobiont, generally the subsidiary member of the symbiotic lichen association, could exhibit clear preferences for environmental factors. These algal preferences may limit the ecological niches available to lichens and lead to the existence of specific lichen guilds.  相似文献   

12.
Axenic cultures of lichen photobionts isolated from bark-inhabiting lichen thalli of the Physcietum adscendentis Ochsner were identified by light microscopy and sequence comparisons of internal transcribed spacer rDNAs to investigate principles of lichenization within a defined lichen sociological unit. The photobiont identity of eight lichen species is reported for the first time (photobiont species in square brackets): Lecania cyrtella (Ach.) Th. Fr. [ Trebouxia arboricola Puym.], Lecania naegelii (Hepp) Diederich & v. d. Boom [ Dictyochloropsis symbiontica Tscherm.-Woess], Candelaria concolor (Dicks) B. Stein [ Trebouxia jamesii (Hildreth & Ahmadjian) Gärtner], Candelariella cf. reflexa (Nyl.) Lettau [ T. jamesii ], Lecanora spec. [ T. arboricola ], Phaeophyscia orbicularis (Neck.) Moberg [ T. impressa Ahmadjian], Physcia adscendens (Fr.) H. Olivier [ T. impressa ] and Lecidella elaeochroma (Ach.) M. Choisy [ T. arboricola ] and could be confirmed for another two species, Physcia stellaris (L.) Nyl. [ Trebouxia impressa ] and Xanthoria parietina (L.) Th. Fr. [ Trebouxia arboricola ]. The observation that pioneer lichens without vegetative propagules, growing on smooth bark, had Trebouxia arboricola as photobiont can be explained by the assumption of a free-living population of Trebouxia arboricola . Species of photobionts from Xanthoria parietina were morphologically and genetically different from those of Physcia adscendens and Phaeophyscia orbicularis , respectively; a finding that does not support the previous assumption that Xanthoria parietina takes over its algal partner from a Physcia species, at least at the sites investigated.  相似文献   

13.
Lichens are a symbiosis consisting of heterotrophic, fungal (mycobiont) and photosynthetic algal or cyanobacterial (photobiont) components. We examined photobiont sequences from lichens in the Ross Sea Region of Antarctica using the internal transcribed spacer region of ribosomal DNA and tested the hypothesis that lichens from this extreme environment would demonstrate low selectivity in their choice of photobionts. Sequence data from three targeted lichen species (Buellia frigida, Umbilicaria aprina and Umbilicaria decussata) showed that all three were associated with a common algal haplotype (an unnamed Trebouxia species) which was present in all taxa and at all sites, suggesting lower selectivity. However, there was also association with unique, local photobionts as well as evidence for species-specific selection. For example, the cosmopolitan U. decussata was associated with two photobiont species, Trebouxia jamesii and an unnamed species. The most commonly collected lichen (B. frigida) had its highest photobiont haplotype diversity in the Dry Valley region, which may have served as a refugium during glacial periods. We conclude that even in these extreme environments, photobiont selectivity still has an influence on the successful colonisation of lichens. However, the level of selectivity is variable among species and may be related to the ability of some (e.g. B. frigida) to colonise a wider range of habitats.  相似文献   

14.
We studied polar and temperate samples of the lichen Cetraria aculeata to investigate whether genetical differences between photobionts are correlated with physiological properties of the lichen holobiont. Net photosynthesis and dark respiration (DR) at different temperatures (from 0 to 30 °C) and photon flux densities (from 0 to 1,200 μmol m?2 s?1) were studied for four populations of Cetraria aculeata. Samples were collected from maritime Antarctica, Svalbard, Germany and Spain, representing different climatic situations. Sequencing of the photobiont showed that the investigated samples fall in the polar and temperate clade described in Fernández-Mendoza et al. (Mol Ecol 20:1208–1232, 2011). Lichens with photobionts from these clades differ in their temperature optimum for photosynthesis, maximal net photosynthesis, maximal DR and chlorophyll content. Maximal net photosynthesis was much lower in Antarctica and Svalbard than in Germany and Spain. The difference was smaller when rates were expressed by chlorophyll content. The same is true for the temperature optima of polar (11 °C) and temperate (15 and 17 °C) lichens. Our results indicate that lichen mycobionts may adapt or acclimate to local environmental conditions either by selecting algae from regional pools or by regulating algal cell numbers (chlorophyll content) within the thallus.  相似文献   

15.
16.
It is increasingly recognized that facilitative interactions can shape communities. One of the mechanisms through which facilitation may operate is when one species facilitates the colonization of another through the exchange of shared symbionts. Lichens are symbiotic associations composed of a mycobiont (lichenised‐fungus) and one or two photobionts (algae or cyanobacteria). Different lichen species may have overlapping specificity for photobionts, creating the possibility that facilitation drives lichen community assembly. To investigate whether facilitation occurs in lichens, we combined an observational study (a) with a manipulative field experiment (b). For (a), we quantified the effect of local patch conditions, facilitation and the size of the surrounding metapopulation on colonizations of an epixylic lichen species (Cladonia botrytes) in an area of managed boreal forest. This was done by twice surveying lichens on 293 stumps, located in stands of three age classes. For (b), we treated unoccupied surfaces of 56 cut stumps with algal mixtures of an Asterochloris photobiont and recorded C. botrytes colonizations over three years. In (a), colonization rates of C. botrytes increased with increasing abundance of other lichen species with specificity for Asterochloris photobionts, consistent with an effect of facilitation. However, in the field experiment (b), colonizations of the focal species did not provide support for facilitation. We conclude that our study provides limited support for facilitation in green‐algal lichens, underscoring the importance of combining observational studies with experiments when studying species interactions.  相似文献   

17.
Microbial symbionts are instrumental to the ecological and long‐term evolutionary success of their hosts, and the central role of symbiotic interactions is increasingly recognized across the vast majority of life. Lichens provide an iconic group for investigating patterns in species interactions; however, relationships among lichen symbionts are often masked by uncertain species boundaries or an inability to reliably identify symbionts. The species‐rich lichen‐forming fungal family Parmeliaceae provides a diverse group for assessing patterns of interactions of algal symbionts, and our study addresses patterns of lichen symbiont interactions at the largest geographic and taxonomic scales attempted to date. We analysed a total of 2356 algal internal transcribed spacer (ITS) region sequences collected from lichens representing ten mycobiont genera in Parmeliaceae, two genera in Lecanoraceae and 26 cultured Trebouxia strains. Algal ITS sequences were grouped into operational taxonomic units (OTUs); we attempted to validate the evolutionary independence of a subset of the inferred OTUs using chloroplast and mitochondrial loci. We explored the patterns of symbiont interactions in these lichens based on ecogeographic distributions and mycobiont taxonomy. We found high levels of undescribed diversity in Trebouxia, broad distributions across distinct ecoregions for many photobiont OTUs and varying levels of mycobiont selectivity and specificity towards the photobiont. Based on these results, we conclude that fungal specificity and selectivity for algal partners play a major role in determining lichen partnerships, potentially superseding ecology, at least at the ecogeographic scale investigated here. To facilitate effective communication and consistency across future studies, we propose a provisional naming system for Trebouxia photobionts and provide representative sequences for each OTU circumscribed in this study.  相似文献   

18.
Summary Green lichens have been shown to attain positive net photosynthesis in the presence of water vapour while blue-green lichens require liquid water (Lange et al. 1986). This behaviour is confirmed not only for species with differing photobionts in the genusPseudocyphellaria but for green and blue-green photobionts in a single joined thallus (photosymbiodeme), with a single mycobiont, and also when adjacent as co-primary photobionts. The different response is therefore a property of the photobiont. The results are consistent with published photosynthesis/water content response curves. The minimum thallus water content for positive net photosynthesis appears to be much lower in green lichens (15% to 30%, related to dry weight) compared to blue-greens (85% to 100%). Since both types of lichen rehydrate to about 50% water content by water vapour uptake only green lichens will show positive net photosynthesis. It is proposed that the presence of sugar alcohols in green algae allow them to retain a liquid pool (concentrated solution) in their chloroplasts at low water potentials and even to reform it by water vapour uptake after being dried. The previously shown difference in δ13C values between blue-green and green lichens is also retained in a photosymbiodeme and must be photobiont determined. The wide range of δ13C values in lichens can be explained by a C3 carboxylation system and the various effects of different limiting processes for photosynthetic CO2 fixation. If carboxylation is rate limiting, there will be a strong discrimination of13CO2, at high internal CO2 partial pressure. The resulting very low δ13C values (-31 to-35‰) have been found only in green lichens which are able to photosynthesize at low thallus water content by equilibraiton with water vapour. When the liquid phase diffusion of CO2 becomes more and more rate limiting and the internal CO2 pressure decreases, the13C content of the photosynthates increases and less negative δ13C values results, as are found for blue-green lichens.  相似文献   

19.
According to the literature the microfilamentous thalli of lichen-forming ascomycetes of the genus Psoroglaena are assumed to harbour vivid green "prochlorophyte" cyanobacterial photobionts. As this would be the first report of terrestrial "prochlorophytes" we investigated the fine structure and two molecular markers (SSU rDNA and rbcL) of the photobionts of P. stigonemoides (Orange) Henssen and P. epiphylla Lücking. Both Psoroglaena spp. had unicellular green algal photobionts, representatives of the Trebouxiophyceae. The photobiont of P. stigonemoides is closely related to the non-symbiotic auxenochlorella protothecoides and to a Chlorella endosymbiont of the freshwater polyp Hydra viridis. The putative photobiont of P. epiphylla may be related to Chlorella luteoviridis, C. saccharophila, and a Pseudochlorella isolate. In contrast to other microfilamentous lichens, which derive their shape from filamentous green algae or cyanobacterial colonies overgrown and ensheathed by the fungal partner, Psoroglaena mycobionts position their unicellular photobiont in uni- or multiseriate rows which strongly resemble the situation in filamentous cyanobacterial colonies.  相似文献   

20.
During the evolution of the lichen symbiosis, shifts from one main type of photobiont to another were infrequent (Miadlikowska et al. 2006 ) but some remarkable transitions from green algal to diazotrophic cyanobacterial photobionts are known from unrelated fungal clades within the ascomycetes. Cyanobacterial, including tripartite, associations (green algal and cyanobacterial photobionts in one lichen individual) facilitate these holobionts to live as C‐ and N‐autotrophs. Tripartite lichens are among the most productive lichens, which provide N‐fertilization to forest ecosystems under oceanic climates (Peltigerales) or deliver low, but ecologically significant N‐input into subarctic and alpine soil communities (Lecanorales, Agyriales). In this issue of Molecular Ecology, Schneider et al. (2016) mapped morphometric data against an eight‐locus fungal phylogeny across a transition of photobiont interactions from green algal to a tripartite association and used a phylogenetic comparative framework to explore the role of nitrogen‐fixing cyanobacteria in size differences in the Trapelia–Placopsis clade (Agyriales). Within the group of tripartite species, the volume of cyanobacteria‐containing structures (cephalodia) correlates with thallus thickness in both phylogenetic generalized least squares and phylogenetic generalized linear mixed‐effects analyses, and the fruiting body core volume increased ninefold. The authors conclude that cyanobacterial symbiosis appears to have enabled lichens to overcome size constraints in oligotrophic environments such as rock surfaces. The Trapelia–Placopsis clade analyzed by Schneider et al. (2016) is an exciting example of interactions between ecology, phylogeny and lichen biology including development – from thin crustose green algal microlichens to thick placodioid, tripartite macrolichens: as thick as three in a bed (Scott 1820 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号