首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The enzyme activities encoded in five cDNAs for chalcone synthase (CHS) homologs from hop were investigated. Only valerophenone synthase (VPS) and CHS_H1 showed both naringenin-chalcone and phlorisovalerophenone forming activity. Narigenin-chalcone production by VPS was much lower than by CHS_H1. Therefore, it is highly possible that flavonoid depends mainly on CHS_H1, while bitter acid biosynthesis depends mainly on VPS and CHS_H1.  相似文献   

2.
The enzyme activities encoded in five cDNAs for chalcone synthase (CHS) homologs from hop were investigated. Only valerophenone synthase (VPS) and CHS_H1 showed both naringenin-chalcone and phlorisovalerophenone forming activity. Narigenin-chalcone production by VPS was much lower than by CHS_H1. Therefore, it is highly possible that flavonoid depends mainly on CHS_H1, while bitter acid biosynthesis depends mainly on VPS and CHS_H1.  相似文献   

3.
4.
Phlorisovalerophenone synthase (VPS), a novel aromatic polyketide synthase, was purified to homogeneity from 4.2 mg protein extract obtained from hop (Humulus lupulus L.) cone glandular hairs. The enzyme uses isovaleryl-CoA or isobutyryl-CoA and three molecules of malonyl-CoA to form phlorisovalerophenone or phlorisobutyrophenone, intermediates in the biosynthesis of the hop bitter acids (alpha- and beta-acids). VPS is an homodimeric enzyme, with subunits of 45 kDa. The pI of the enzyme was 6.1. Km values of 4 microm for isovaleryl-CoA, 10 microm for isobutyryl-CoA and 33 microm for malonyl-CoA, were found. The amino-acid sequences of two peptides, obtained by digestion of VPS, showed that the enzyme is highly homologous to plant chalcone synthases. The functional and structural relationship between VPS and other aromatic polyketide synthases is discussed.  相似文献   

5.
Raspberry ketone accounts for the characteristic aroma of the raspberry fruit. A bifunctional enzyme with both chalcone synthase (CHS) and benzalacetone synthase (BAS) activity is thought to play a crucial role in the synthesis of p-hydroxybenzalacetone, yet the in vitro enzymatic properties and reaction products of the CHS/BAS recombinant enzyme from raspberry have not been characterized. In this work, a type III polyketide synthase (PKS) gene (RinPKS1) and its corresponding cDNA were isolated from raspberry. Sequence and phylogenetic analyses demonstrated that RinPKS1 is a CHS. However, functional and enzymatic analyses showed that recombinant RinPKS1 is a bifunctional enzyme with both CHS and BAS activity. RinPKS1 showed some interesting characteristics: (1) no traces of bis-noryangonin and 4-coumaroyltriacetic acid lactone could be detected in the enzyme reaction mixture at different pH values; and (2) recombinant RinPKS1 overexpressed in Escherichia coli effectively yielded p-hydroxybenzalacetone as a dominant product at high pH; however, it effectively yielded naringenin as a dominant product at low pH. Furthermore, 4-coumaroyl-CoA and feruloyl-CoA were the only cinnamoyl-CoA derivatives accepted as starter substrates. RinPKS1 did not accept isobutyryl-CoA, isovaleryl-CoA or acetyl-CoA as substrates.  相似文献   

6.
Recent studies on chalcone synthase (CHS) and the related stilbene synthase (STS) suggest that the structure of chs-like genes in plants has evolved into different forms, whose members have both different regulation and capacity to code for different but related enzymatic activities. We have studied the diversity of chs-like genes by analysing the structure, expression patterns and catalytic properties of the corresponding enzymes of three genes that are active during corolla development in Gerbera hybrida. The expression patterns demonstrate that chs-like genes are representatives of three distinct genetic programmes that are active during organ differentiation in gerbera. Gchs1 and gchs3 code for typical CHS enzymes, and their gene expression pattern temporally correlates with flavonol (gchs1, gchs3) and anthocyanin (gchs1) synthesis during corolla development. Gchs2 is different. The expression pattern does not correlate with the pigmentation pattern, the amino acid sequence deviates considerably from the consensus of typical CHSs, and the catalytic properties are different. The data indicate that it represents a new member in the large superfamily of chs and chs-related genes.  相似文献   

7.
The chalcone synthase is a key enzyme that catalyses the first dedicated reaction of the flavonoid pathway in higher plants. The chs gene and its protein product in rice has been investigated. The presence of a chalcone synthase (CHS) protein in rice seedlings and its developmental stage-specific expression has been demonstrated by western analysis. The chalcone synthase of rice was found to be immunologically similar to that of maize. A rice cDNA clone, Os-chs cDNA, encoding chalcone synthase, isolated from a leaf cDNA library of an indica rice variety Purpleputtu has been mapped to the centromeric region of chromosome 11 of rice. It was mapped between RFLP markers RG2 and RG103. RG2 is the nearest RFLP marker located at a genetic distance of 3.3 cM. Some segments of chromosome 11 of rice including chs locus are conserved on chromosome 4 of maize. The markers, including chs locus on chromosome 11 of rice are located, though not in the same order, on chromosome 4 of maize. Genetic analysis of purple pigmentation in two rice lines, Abhaya and Shyamala, used in the present mapping studies, indicated the involvement of three genes, one of which has been identified as a dominant inhibitor of leaf pigmentation. The Os-chs cDNA shows extensive sequence homology, both for DNA and protein (deduced), to that of maize, barley and also to different monocots and dicots.  相似文献   

8.
In the ornamental cut flower plant Gerbera hybrida the spatial distribution of regulatory molecules characteristic of differentiation of the composite inflorescence is visualized as the various patterns of anthocyanin pigmentation of different varieties. In order to identify genes that the plant can regulate according to these anatomical patterns, we have analysed gene expression affecting two enzymatic steps, chalcone synthase (CHS) and dihydroflavonol-4-reductase (DFR), in five gerbera varieties with spatially restricted anthocyanin pigmentation patterns. The dfr expression profiles vary at the levels of floral organ, flower type and region within corolla during inflorescence development according to the anthocyanin pigmentation of the cultivars. In contrast, chs expression, although regulated in a tissue-specific manner during inflorescence development, varies only occasionally. The variation in the dfr expression profiles between the varieties reveals spatially specific gene regulation that senses the differentiation events characteristic of the composite inflorescence.  相似文献   

9.
Han YY  Ming F  Wang W  Wang JW  Ye MM  Shen DL 《Genetica》2006,128(1-3):429-438
Plant genomes appear to exploit the process of gene duplication as a primary means of acquiring biochemical and developmental flexibility. The best example is the gene encoding chalcone synthase (CHS, EC2.3.1.74), the first committed step in flavonoid biosynthesis. In this study, we examined the molecular evolution of three CHS family members of Phalaenopsis including a novel chs gene (phchs5), which is slowly evolved. The inferred phylogeny of the chs genes of Phalaenopsis with other two orchid plants, Bromoheadia finlaysoniana and Dendrobium hybrid, suggested that gene duplication and divergence have occurred before divergence of these three genera. Relatively quantitative RT-PCR analysis identified expression patterns of these three chs genes in different floral tissues at different developmental stages. Phchs5 was the most abundantly expressed chs gene in floral organs and it was specifically transcribed in petal and lip at the stages when anthocyanin accumulated (stage1–4). Phchs3 and phchs4 were expressed at much lower levels than phchs5. Phchs3 was expressed in pigmented tissue (including lip, petal and sepal) at middle stages (stages 2–4) and in colorless reproductive tissue at late stage (stage 5). Phchs4 was only expressed in petal at earlier stages (stage 1–3) and in lip at middle stage (stage 4). These results present new data on differentiation of gene expression among duplicate copies of chs genes in Phalaenopsis.  相似文献   

10.
11.
Summary With the help of a cDNA probe for a chalcone synthase gene of Petroselinum a cDNA clone for a chalcone synthase gene of Petunia hybrida could be identified. The homologous cDNA allowed the cloning of two genomic EcoRI fragments from Petunia hybrida containing complete chalcone synthase genes. It could be demonstrated that the genes on the two fragments are different and are not allelic but members of a gene family. The two genes are found in a variety of different Petunia lines including in the two conditional mutants affected in chalcone synthase expression in floral buds, White Joy and Red Star. The structure of the two chs genes from Petunia is compared to the chs gene from Antirrhinum majus.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

12.
Suppression of gene expression using antisense technology has been successful in various applications. In this paper we report differential inhibition of gene expression of the chalcone synthase (chs) gene superfamily members in transgenic Gerbera hybrida (Asteraceae) plants. We have transformed two different cDNAs of the chs gene family, gchs 1 [4] and gchs2, in antisense orientation under control of the CaMV 35S promoter into gerbera. Gchs1 codes for an enzyme with chalcone synthase activity while gchs2 is a more diverged member of the gene family having distinct structure and expression pattern. Furthermore, gchs2 is evidently not involved in anthocyanin synthesis and encodes an enzyme with novel catalytic properties. In both cases effective blocking of the resident sense gene expression was detected. In addition, the transformation affected differentially the expression of other members of the chs gene family. The degree of inhibition appeared to depend on the sequence homology between the antisense and the target genes. In the unevenly coloured inflorescences detected among anti-gchs1 transformants during their growth, relaxation of the antisense effect was here shown to start from the most distant member of the gene family, further demonstrating the influence of sequence homology in the stability of antisense inhibition.  相似文献   

13.
14.
Chalcone synthase (CHS, EC 2.3.1.74) is the key enzyme involved in flavonoid and anthocyanin biosynthesis. A complete DNA sequence of chalcone synthase gene designated Pchs1 was isolated by means of usual and then inverse polymerase chain reactions from genomic DNA of an orchid, Phalaenopsis hybrida, cv. Formosa rose. Nucleotide sequence analysis based on alignment with published Phalaenopsis chs cDNA revealed that Pchs1 contained an intact open reading frame of 1173-bp with one 109-bp intron at the conserved site. The deduced polypeptide (PCHS1) from Pchs1 comprised 390 amino acids with a predicted mol wt of 42.5 kD. PCHS1 showed 61–65% identities with CHS from other plants and retained most of the conserved residues. Some putative cis-regulatory elements were present at the 5′ and 3′ flanking regions of Pchs1. Southern blot analysis predicted at least four chs-like genes, thus indicating the presence of a small multigene chs family in P. hybrida. Relative quantitative RT-PCR showed that Pchs1 is expressed in petals at early flower development as well as in lip tissue when the flower has just opened. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 2, pp. 250–258. The text was submitted by the authors in English.  相似文献   

15.
Prediction and analysis of molecular structure and biochemical function are of theoretical guiding significance for gene discovery and application, and considered as one of the central problem of computational biology. Here, some characteristic features of chalcone synthase (CHS) family from Scutellaria baicalensis were described via bioinformatic analysis, and showed as following: the nucleic acid sequences and amino acid sequences of three chs member genes shared high similarity in the molecular structures and physicochemical properties; SbCHS proteins were localized to the cytosol, and possessed a good hydrophobic nature, with lacking any transmembrane topological structure. The phylogram analysis suggested that they were a group genes with significant functional association and genetic conservation. The secondary structures of the SbCHSs were mainly composed of α-helixes and random coils, and the tertiary structures contained malonyl CoA linkers, besides, each of CHS-A and CHS-B with N-glycosylation motif included. Taken together, these results demonstrate that CHS family from S. baicalensis has the typical molecular structure and function of chalcone synthase, compared with the experimental data for Medicago sativa CHS protein.  相似文献   

16.
Substrate specificity of recombinant chalcone synthase (CHS) from Scutellaria baicalensis (Labiatae) was investigated using chemically synthesized aromatic and aliphatic CoA esters. It was demonstrated for the first time that CHS converted benzoyl-CoA to phlorobenzophenone (2,4,6-trihydroxybenzophenone) along with pyrone by-products. On the other hand, phenylacetyl-CoA was enzymatically converted to an unnatural aromatic polyketide, phlorobenzylketone (2, 4,6-trihydroxyphenylbenzylketone), whose structure was finally confirmed by chemical synthesis. Furthermore, in agreement with earlier reports, S. baicalensis CHS also accepted aliphatic CoA esters, isovaleryl-CoA and isobutyryl-CoA, to produce phloroacylphenones. In contrast, hexanoyl-CoA only afforded pyrone derivatives without formation of a new aromatic ring. It was noteworthy that both aromatic and aliphatic CoA esters were accepted in the active site of the enzyme as a starter substrate for the complex condensation reaction. The low substrate specificity of CHS thus provided further insight into the structure and function of the enzyme.  相似文献   

17.
Chalcone synthase (CHS, EC 2.3.1.74) is a key enzyme in the biosynthesis of flavonoids, which plays an important role in flower pigmentation and protection against UV, plant-microbe interactions, and plant fertility. In many plants, genes encoding CHS constitute a multigene family, wherein sequence and functional divergence occurred repeatedly. Since the genome of rice (Oryza sativa) has been completely sequenced, many genes possessing typical CHS domains were assumed to be chs genes, although the sequence and functional divergence of this large gene family has not as yet been investigated. In this study, all putative CHS members from O. sativa were analyzed by the phylogenetic methods. Our results indicate that the members of rice CHS superfamily probably diverged into four branches. Members of each branch may perform specific functions. Two conserved chs genes clustered with chs genes from other monocotyledon and dicotyledon species are believed to encode true CHSs responsible for the biosynthesis of flavonoids and anthocyanins. Two chs genes in one distant branch might play some functions in fertility. Several other putative chs genes were clustered together, and the function of this branch could not be predicted. Many tentative chs genes were clustered together with fatty acid synthase (FAS) genes. These genes may belong to the fas gene family. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 3, pp. 460–465. This text was submitted by the authors in English.  相似文献   

18.
Flavonols are plant metabolites suggested to serve a vital role in fertilization of higher plants. Petunia and maize plants mutated in their flavonol biosynthesis are not able to set seed after self-pollination. We have investigated the role of these compounds in Arabidopsis thaliana. Like in all other plant species, high levels of flavonols could be detected in pollen of wild-type A. thaliana. No flavonols were detected in reproductive organs of the A. thaliana tt4 mutant in which the chs gene is mutated. Surprisingly, this mutant did set seed after self-fertilization and no pollen tube growth aberrations were observed in vivo. The role of flavonols during fertilization of Arabidopsis is discussed.Abbreviations CHS chalcone synthase - TLC thin-layer chromatography  相似文献   

19.
For Matthiola incana (Brassicaceae), used as a model system to study biochemical and genetical aspects of anthocyanin biosynthesis, several nearly isogenic colored wild type lines and white-flowering mutant lines are available, each with a specific defect in the genes responsible for anthocyanin production (genes e, f, and g). For gene f supposed to code for chalcone synthase (CHS; EC 2.3.1.74), the key enzyme of the flavonoid/anthocyanin biosynthesis pathway belonging to the group of type III polyketide synthases (PKS), the wild type genomic sequence of M. incana line 04 was determined in comparison to the white-flowering CHS mutant line 18. The type of mutation in the chs gene was characterized as a single nucleotide substitution in a triplet AGG coding for an evolutionary conserved arginine into AGT coding for serine (R72S). Northern blots and RT-PCR demonstrated that the mutated gene is expressed in flower petals. Heterologous expression of the wild type and mutated CHS cDNA in E. Scherichia coli, verified by Western blotting and enzyme assays with various starter molecules, revealed that the mutant protein had no detectable activity, indicating that the strictly conserved arginine residue is essential for the enzymatic reaction. This mutation, which previously was not detected by mutagenic screening, is discussed in the light of structural and functional information on alfalfa CHS and related type III PKS enzymes.  相似文献   

20.
Chalcone synthase (CHS) and stilbene synthase (STS) are closely related polyketide synthases which are key enzymes in the biosynthesis of flavonoids and stilbenes. Scots pine (Pinus sylvestris) is an interesting plant for a direct comparison of the enzymes. It not only contains the usual flavonoids, but also an unusual chalcone derivative (pinocembrin), and it synthesizes stilbenes of the pinosylvin type. We analysed a CHS and a STS by molecular cloning and functional expression in Escherichia coli. The CHS was active not only with 4-coumaroyl-CoA (to naringenin chalcone), but also with cinnamoyl-CoA (leading to pinocembrin). The STS was identified as dihydropinosylvin synthase, because it preferred dihydrocinnamoyl-CoA to cinnamoyl-CoA. The protein deviated in 47 positions from the CHS consensus. It had 73.2% identity with the CHS from P. sylvestris and only 65.3% with a STS from peanut (Arachis hypogaea). We also investigated the regulation of both enzyme types in P. sylvestris plantlets exposed to stress. CHS was present in non-stressed plantlets, and induction led to a transient increase with a peak after 16 h. STS1 type activities were regulated differently and were absent in non-stressed plantlets. Increases were observed after a lag period of at least 6 h, and highest activities were obtained after 30 h. The analysis of the reactions in the plant extracts and the substrate specificity of the cloned STS indicate that the plants contain at least two different types of STS: the cloned dihydropinosylvin synthase and a pinosylvin synthase which preferentially utilizes cinnamoyl-CoA as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号