首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Abstract

Anthocyanins are secondary metabolites, which play important roles in the physiology of plants. In tomato (Solanum lycopersicum L.), anthocyanins are normally synthesized only in vegetative tissues. M375 is a mutant unable to produce anthocyanins in leaves and stems. In this study, we investigated the anthocyanin biosynthetic pathway in M375 and in its genetic background, Alice, in order to find out where the anthocyanin biosynthesis is blocked, along the pathway, in the mutant. Anthocyanins accumulation was enhanced by sucrose only in the wild type, even though the expression of several genes involved in anthocyanin biosynthesis was normal in both the genotypes. Genes coding for the final steps along the anthocyanin biosynthetic pathway were, however, less expressed in the M375 when compared to the wild type.  相似文献   

2.
A spontaneous white-flower mutant of Chinese cabbage-pak-choi (Brassica campestris ssp. chinenesis, syn. B. rapa ssp. chinenesis) was found in our test fields, and all the plant characters except flower color were identical with wild type ones. We hypothesized that a mutational event had occurred in the gene coding for chalcone synthase (CHS), the key enzyme of flavonoid biosynthesis pathway. Two genes, later designated BcCHS and BcCHS-wf, were isolated from wild type and mutant Chinese cabbage-pak-choi, respectively, using gene-specific primer pairs. Comparison of the genomic sequences revealed two mutations in BcCHS-wf, both with A to G transitions, one at position +37 bp and the other at +970 bp. Both nucleotide substitutions occurred in AGA codes for arginine into GGA for glycin at residue +13 and into AGC coding for serine at residue +229, respectively. Homologous genes of BcCHS were isolated from another four cruciferous plants, though there were some differences among the genomic and deduced amino acid sequences, the mutation locus of the mutant, as we called it, were identical to the wild type Chinese cabbage-pak-choi.  相似文献   

3.
4.
5.
Polyketide synthases (PKS) produce an array of natural products with different biological activities and pharmacological properties by varying the starter and extender molecules that form the final polyketide. Recent studies of the simplest PKS, the chalcone synthase (CHS)-like enzymes involved in the biosynthesis of flavonoids, anthocyanin pigments, and antimicrobial phytoalexins, have yielded insight on the molecular basis of this biosynthetic versatility. Understanding the structure–function relationship in these PKS provides a foundation for manipulating polyketide formation and suggests strategies for further increasing the scope of polyketide biosynthetic diversity. Journal of Industrial Microbiology & Biotechnology (2001) 27, 393–398. Received 14 June 2001/ Accepted in revised form 15 July 2001  相似文献   

6.
The Arabidopsis floral homeotic gene AGAMOUS (AG) is a regulator of early flower development. The ag mutant phenotypes suggest that AG has two functions in flower development: (1) specifying the identity of stamens and carpels, and (2) controlling floral meristem determinacy. To dissect these two AG functions, we have generated transgenic Arabidopsis plants carrying an antisense AG construct. We found that all of the transgenic plants produced abnormal flowers, which can be classified into three types. Type I transgenic flowers are phenocopies of the ag-1 mutant flowers, with both floral meristem indeterminacy and floral organ conversion; type II flowers are indeterminate and have partial conversion of the reproductive organs; and type III flowers have normal stamens and carpels, but still have an indeterminate floral meristem inside the fourth whorl of fused carpels. The existence of type III flowers indicates that AG function can be perturbed to affect only floral meristem determinacy, but not floral organ identity. Furthermore, the fact that floral meristem determinacy is affected in all transformants, but floral organ identity only in a subset of them, suggests that the former may required a higher level of AG activity than the latter. This hypothesis is supported by the levels of AG'mRNA detected in different transformants with different frequencies of distinct types of abnormal antisense AG transgenic flowers. Finally, since AG inhibits the expression of another floral regulatory gene AP1, we examined AP1 expression in antisense AG flowers, and found that AP1 is expressed at a relatively high level in the center of type II flowers, but very little or below detectable levels in the inner whorls of type III flowers. These results provide further insights into the interaction of AG and AP1 and how such an interaction may control both organ identity and floral meristem determinacy.  相似文献   

7.
【目的】探究花生根瘤菌Bradyrhizobium sp.MM6的Ⅲ型分泌系统(T3SS)的结构及其在根瘤菌与不同宿主建立共生关系中的作用。【方法】同源比对分析菌株MM6的T3SS基因簇的结构特征,并采用三亲本接合转移的方法构建T3SS调节基因ttsI突变菌株;通过蛭石结瘤和石蜡切片实验,比较突变体与野生型的共生固氮表型差异。【结果】经预测,MM6的T3SS基因簇编码区长约34.1 kb,可分为3个区域,包含10个保守结构基因和8个效应蛋白基因,与B.diazoefficiens USDA110相应基因的序列相似性为83%–93%;成功构建了MM6的ttsI突变株;ttsI突变株与野生型分别与花生(S523和Y45)、野大豆和大豆中黄57结瘤,ttsI突变体在花生中的总瘤数显著增加(P<0.05),根瘤中含菌细胞更多;ttsI突变体在野大豆中平均每株植物增加4个根瘤,根瘤中含菌细胞更多,地上部干重相比野生型MM6显著增加(P<0.05);在大豆中黄57中,野生型MM6能形成红色的有效根瘤,ttsI突变体不结瘤,且植株叶片发黄,地上部干重相比野生型MM6显著降低(P<0.05)。【结论】MM6的T3SS在花生和野大豆共生体系中起着有害的作用,而在大豆中黄57的共生体系中起着有利的作用。  相似文献   

8.
Chalcone synthase (CHS) is involved in the biosynthesis of anthocyanin. In this study, a full-length DNA of CHS gene (named as CsCHS-bo) was cloned from the blood orange, Citrus sinensis (L.) Osbeck cv. Ruby. The gene was 1,512 bp in size containing an open reading frame (1,176 bp) encoding 391 amino acids. Comparative and bioinformatic analyses revealed that the deduced protein of CsCHS-bo was highly homologous to CHS from other plant species. The protein of CsCHS-bo had four CHS-specific conserved motifs and a CHS-family signature sequence GFGPG. Phylogenetic analysis indicated that the protein of CsCHS-bo was in a subgroup with CHS of Ruta Palmatum. The CsCHS-bo was localized to the chromosomes 2p, 4p and 6p by an improved fluorescence in situ hybridization technique, indicating that at least three copies of CsCHS-bo were present in the genome. The novel nucleotide sequence data published here have been deposited in the EMBL/DDBJ/GenBank databases under accession number EU410483.  相似文献   

9.
Streptolydigin, a secondary metabolite produced by Streptomyces lydicus, is a potent inhibitor of bacterial RNA polymerases. It has been suggested that streptolydigin biosynthesis is associated with polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS). Thus, there is great interest in understanding the role of fatty acid biosynthesis in the biosynthesis of streptolydigin. In this paper, we cloned a type II fatty acid synthase (FAS II) gene cluster of fabDHCF from the genome of S. lydicus and constructed the SlyfabCF-disrupted mutant. Sequence analysis showed that SlyfabDHCF is 3.7 kb in length and encodes four separated proteins with conserved motifs and active residues, as shown in the FAS II of other bacteria. The SlyfabCF disruption inhibited streptolydigin biosynthesis and retarded mycelial growth, which were likely caused by the inhibition of fatty acid synthesis. Streptolydigin was not detected in the culture of the mutant strain by liquid chromatography–mass spectrometry. Meanwhile, the streptolol moiety of streptolydigin accumulated in cultures. As encoded by fabCF, acyl carrier protein (ACP) and β-ketoacyl-ACP synthase II are required for streptolydigin biosynthesis and likely involved in the step between PKS and NRPS. Our results provide the first genetic and metabolic evidence that SlyfabCF is shared by fatty acid synthesis and antibiotic streptolydigin synthesis.  相似文献   

10.
A cDNA clone (pcM12) of the chalcone synthase (CHS) ofMatthiola incana R. Br. (Brassicacease) was isolated from a cDNA library, sequenced and analysed. It comprises the complete coding sequence for the CHS and 5 and 3 untranslated regions. The deduced amino acid sequence shows that theMatthiola incana CHS consists of 394 amino acid residues. Comparison with CHS amino acid sequences of other plants indicates more than 82% homology.  相似文献   

11.
Berry skin color mutants are phenotypically different from their original cultivars, but they show identical molecular profile if analysed by using microsatellite markers. This work gives an easy, inexpensive and quick diagnostic tool to discriminate these somatic variants. We distinguished some grape (Vitis vinifera L.) skin color mutants from white to red or pink and from black to grey, pink or white and we investigated their molecular bases by single-strand conformational polymorphism (SSCP), single base primer extension and coding sequence analysis of anthocyanin biosynthetic enzyme genes and by polymerase chain reaction (PCR) analysis of VvmybA1 regulatory gene. Analyses of structural genes did not reveal polymorphisms between wild type and mutant cultivars but only among different varieties, whereas the study of VvmybA1 regulatory gene has given important outcomes for color mutants characterisation. The discrimination between white wild type and its derived colored mutant and between black wild type and white mutant has been obtained through a simple test of amplification for presence/absence. The discrimination between black wild type and less colored mutant has occurred through a quantitative result on agarose gel confirmed by real-time PCR analysis: the amount of functional allele in less colored somatic variants genome was about one-fourth of the correspondent quantity in original black cultivars genome.  相似文献   

12.
Flavonols are plant metabolites suggested to serve a vital role in fertilization of higher plants. Petunia and maize plants mutated in their flavonol biosynthesis are not able to set seed after self-pollination. We have investigated the role of these compounds in Arabidopsis thaliana. Like in all other plant species, high levels of flavonols could be detected in pollen of wild-type A. thaliana. No flavonols were detected in reproductive organs of the A. thaliana tt4 mutant in which the chs gene is mutated. Surprisingly, this mutant did set seed after self-fertilization and no pollen tube growth aberrations were observed in vivo. The role of flavonols during fertilization of Arabidopsis is discussed.Abbreviations CHS chalcone synthase - TLC thin-layer chromatography  相似文献   

13.
Regulatory mechanisms of betacyanin biosynthesis in suspension cultures of Phytolacca americana and anthocyanin in Vitis sp. were investigated in relation to cell division activity.Betacyanin biosynthesis in Phytolacca cells clearly shows a positive correlation with cell division, as the peak of betacyanin accumulation was observed at the log phase of batch cultures. Incorporation of radioactivity from labelled tyrosine into betacyanin also showed a peak at early log phase. Aphidicolin, an inhibitor of DNA synthesis, and propyzamide, an antimicrotubule drug, reduced betacyanin accumulation and inhibited the incorporation of radioactivity from labelled tyrosine into betacyanin at concentrations which were inhibitory to cell division. Both inhibitors reduced the incorporation of radioactivity from labelled tyrosine to 3,4-dihydroxyphenylalanine (DOPA), but the incorporation of labelled DOPA into betacyanin was not affected. These results suggest that the conversion of tyrosine to DOPA is coupled with cell division activity.In contrast, the anthocyanin accumulation in Vitis cells showed a negative correlation with cell division. Accumulation occurred at the stationary phase in batch cultures when cell division ceased. Aphidicolin or reduced phosphate concentration induced a substantial increase in anthocyanin accumulation as well as the inhibition of cell division. Chalcone synthase (CHS) activity increased at the time of anthocyanin accumulation. Northern blotting analysis indicated that changes in CHS mRNA levels corresponded to similar changes in enzymatic activity. The pool size of endogenous phenylalanine was low during active cell division, but increased before anthocyanin began to accumulate and concomitantly with increasing levels of CHS mRNA. Exogenous supply of phenylalanine at the time of low endogenous levels induced the elevation of CHS mRNA and anthocyanin accumulation. These results indicate that the elevation of endogenous phenylalanine levels, when cell division ceases, may cause the increase in CHS mRNA levels, resulting in increased CHS activity and subsequently in anthocyanin accumulation in Vitis suspension cultures.Abbreviations CHS chalcone synthase - CHFI chalcone flavanone isomerase - DOPA 3,4-dihydroxyphenylalanine - PAL phenylalanine ammonia lyase  相似文献   

14.
A temperature-sensitive, protein synthesis-defective mutant ofEscherichia coli exhibiting an altered ribosomal protein L22 has been investigated. The temperature-sensitive mutation was mapped to therplV gene for protein L22. The genes from the wild type and mutant strains were amplified by the polymerase chain reaction and the products were sequenced. A cytosine to thymine transition at position 22 of the coding sequence was found in the mutant DNA, predicting an arginine to cysteine alteration in the protein. A single cysteine residue was found in the isolated mutant protein. This amino acid change accounts for the altered mobility of the mutant protein in two-dimensional gels and during reversed-phase HPLC. The temperature-sensitive phenotype was fully complemented by a plasmid carrying the wild type L22 gene. Ribosomes from the complemented cells showed only wild type protein L22 by two dimensional gel analysis and were as heat-resistant as control ribosomes in a translation assay. The point mutation in the L22 gene is uniquely responsible for the temperature-sensitivity of this strain.  相似文献   

15.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

16.
【目的】本研究旨在确认链霉菌Streptomyces rubellomurinus ATCC 31215来源芳香聚酮化合物(gombapyrones, GOMs)的生物合成基因簇(biosynthetic gene cluster, BGC),并对其生物合成途径进行推导。【方法】对链霉菌S. rubellomurinus ATCC 31215进行大规模发酵及提取分离,得到GOM-B和GOM-D;以三烷基取代芳香聚酮生物合成途径保守存在的P450单氧化酶的蛋白序列作为探针,在GOMs产生菌S. rubellomurinus基因组中进行BLAST搜索获得潜在的GOMs生物合成基因簇(gom BGC);通过对gom BGC中的聚酮合成酶(polyketide synthase, PKS)结构基因进行同框缺失突变,对突变株发酵产物进行高效液相色谱-质谱(highperformanceliquidchromatography-massspectrometry,HPLC-MS)分析以确认gomBGC与GOMs的产生相关;基于生物信息学分析,推导GOM-B的生物合成途径。【结果】从S. rubell...  相似文献   

17.
【目的】从菌株Streptomyces albus DSM 41398的发酵产物中发掘结构多样的由I型聚酮合酶催化形成的化合物,以期找到具有新颖结构或强生物活性的化合物。在结构鉴定的基础上,对其生物合成途径进行分析。【方法】利用HPLC分析方法,通过系统比较野生型菌株S.albus DSM 41398与I型聚酮合酶编码基因簇失活突变株的发酵产物差异,实现目标化合物的定向分离。然后,利用~1H-和~(13)C-NMR以及HR-ESI-MS进行化合物的结构鉴定。最后,利用生物信息学等方法对化合物的生物合成途径进行推测和分析。【结果】从5 L的S.albus DSM 41398发酵产物中,分离得到了2个具有抗肿瘤活性的聚酮类化合物放线吡喃酮和洋橄榄菌素,分别定位了它们的生物合成基因簇,并分别对其生物合成途径进行了推导。其中,放线吡喃酮的生物合成基因簇为首次报道。【结论】本研究一方面为基因组发掘S.albus DSM 41398中其他由I型聚酮合酶催化形成的化合物提供参考,另一方面也为相关化合物的结构修饰改造奠定了良好的基础。  相似文献   

18.
黄酮类化合物具有多种生物活性,在食品、药品、化妆品等领域都有重要应用。柚皮素是多种重要黄酮类化合物生物合成的平台化合物。泛素化是蛋白质翻译后修饰的重要一环,参与调控细胞的生命活动。泛素化的蛋白质通过泛素-蛋白酶体系统降解,对维持细胞正常生理活动具有重要意义,对外源蛋白的表达和积累也可能具有显著影响。文中利用荧光双分子互补法在酿酒酵母Saccharomyces cerevisiae中建立了泛素化修饰的实时原位检测体系,以荧光强度表征蛋白的泛素化修饰程度。应用该方法获得了柚皮素合成途径中5个关键酶的潜在泛素化位点。将相关泛素化位点的赖氨酸突变为精氨酸,用于降低关键酶的泛素化修饰程度。其中,酪氨酸解氨酶FjTAL、查尔酮合成酶SjCHS、SmCHS突变体表现为荧光下降,表明其泛素化水平有所降低。发酵结果表明,表达酪氨酸解氨酶FjTAL突变体FjTAL-K487R的酿酒酵母在发酵72 h后获得了74.2 mg/L的对香豆酸产量,相较于原始FjTAL提高了32.3%,而表达查尔酮合成酶突变体的酿酒酵母产量没有明显变化。结果表明,对柚皮素生物合成途径相关蛋白的潜在泛素化位点进行突变,能够提高对香豆...  相似文献   

19.
Photocontrol of anthocyanin biosynthesis in tomato   总被引:4,自引:0,他引:4  
Juvenile anthocyanin biosynthesis has been studied in dark-grown seedlings of tomato (Lycopersicon esculentum Mill.) wild types (WTs) and photomorphogenic mutants. During a subsequent 24-hr period of monochromatic irradiation at different fluence rates of red light (R) the fluence-rate response relationships for induction of anthocyanin in all the WTs are similar, yet complex, showing a response at low fluence rates (LFRR) followed by a fluence rate-dependent high irradiance response (HIR). In the hypocotyl this response is restricted to the sub-epidermal layer of cells. The high-pigment-1 (hp-1) mutant exhibits a strong amplification of both response components. Theatroviolacea (atv) mutant shows strongest amplification of the HIR component. In contrast, a transgenic line overexpressing an oat phytochrome A gene (PHYA3 +) shows a most dramatic amplification of the LFRR component. The far-red light (FR)-insensitive (fri) mutant, deficient in phytochrome A (phyA), lacks the LFRR component whilst retaining a normal HIR. The temporarily R-insensitive (tri) mutant, deficient in phytochrome B1 (phyB1) retains the LFRR, but lacks the HIR. Thehp-1,fri andhp-1,tri double mutant, exhibit amplified, yet qualitatively similar responses to the monogenicfri andtri mutants. Thefri,tri double mutant lacks both response components in R, but a residual response to blue light (B) remains. Similarly, theaurea (au) mutant deficient in phytochrome chromophore biosynthesis and presumably all phytochromes, lacks both response components in the R and FR regions of the spectrum. Experiments at other wavelengths demonstrate that while there is only a small response in the FR spectral region (729 nm) in tomato, there is an appreciable HIR response in the near FR at 704 nm, which is retained in thetri mutant. This suggests that the labile phyA pool participates in the HIR at this wavelength. The intense pigmentation (Ip) mutant appears to be specifically deficient in the B1 induced anthocyanin biosynthesis. Adult plants, grown under fluorescent light/dark cycles, show a reduction of anthocyanin content of young developing leaves upon application of supplemtary or end-of-day FR. The involvement of different phytochrome species in anthocyanin biosynthesis based on micro-injection studies into theau mutant and studies using type specific phytochrome mutants is discussed.  相似文献   

20.
Polyketide synthases (PKSs) occur in many bacteria, fungi and plants. They are highly versatile enzymes involved in the biosynthesis of a large variety of compounds including antimicrobial agents, polymers associated with bacterial cell walls and plant pigments. While harmful algae are known to produce polyketide toxins, sequences of the genomes of non‐toxic algae, including those of many green algal species, have surprisingly revealed the presence of genes encoding type I PKSs. The genome of the model alga Chlamydomonas reinhardtii (Chlorophyta) contains a single type I PKS gene, designated PKS1 (Cre10.g449750), which encodes a giant PKS with a predicted mass of 2.3 MDa. Here, we show that PKS1 is induced in 2‐day‐old zygotes and is required for their development into zygospores, the dormant stage of the zygote. Wild‐type zygospores contain knob‐like structures (~50 nm diameter) that form at the cell surface and develop a central cell wall layer; both of these structures are absent from homozygous pks1 mutants. Additionally, in contrast to wild‐type zygotes, chlorophyll degradation is delayed in homozygous pks1 mutant zygotes, indicating a disruption in zygospore development. In agreement with the role of the PKS in the formation of the highly resistant zygospore wall, mutant zygotes have lost the formidable desiccation tolerance of wild‐type zygotes. Together, our results represent functional analyses of a PKS mutant in a photosynthetic eukaryotic microorganism, revealing a central function for polyketides in the sexual cycle and survival under stressful environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号