首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pancreatic acinar-to-ductal metaplasia (ADM) is associated with an increased risk of pancreatic cancer and is considered a precursor of pancreatic ductal adenocarcinoma. Transgenic expression of transforming growth factor alpha (TGF-α) or K-ras(G12D) in mouse pancreatic epithelium induces ADM in vivo. Protein kinase C iota (PKCι) is highly expressed in human pancreatic cancer and is required for the transformed growth and tumorigenesis of pancreatic cancer cells. In this study, PKCι expression was assessed in a mouse model of K-ras(G12D)-induced pancreatic ADM and pancreatic cancer. The ability of K-ras(G12D) to induce pancreatic ADM in explant culture, and the requirement for PKCι, was investigated. PKCι is elevated in human and mouse pancreatic ADM and intraepithelial neoplastic lesions in vivo. We demonstrate that K-ras(G12D) is sufficient to induce pancreatic ADM in explant culture, exhibiting many of the same morphologic and biochemical alterations observed in TGF-α-induced ADM, including a dependence on Notch activation. PKCι is highly expressed in both TGF-α- and K-ras(G12D)-induced pancreatic ADM and inhibition of PKCι significantly reduces TGF-α- and K-ras(G12D)-mediated ADM. Inhibition of PKCι suppresses K-ras(G12D)-induced MMP-7 expression and Notch activation, and exogenous MMP-7 restores K-ras(G12D)-mediated ADM in PKCι-depleted cells, implicating a K-ras(G12D)-PKCι-MMP-7 signaling axis that likely induces ADM through Notch activation. Our results indicate that PKCι is an early marker of pancreatic neoplasia and suggest that PKCι is a potential downstream target of K-ras(G12D) in pancreatic ductal metaplasia in vivo.  相似文献   

2.
Activating mutations in the K-ras gene are genetic alterations frequently found in human carcinomas, particularly in pancreatic adenocarcinomas. Mutation of the K-ras gene is thought to be an early and important event in pancreatic tumor initiation, but the precise role of the mutant K-Ras proteins in neoplastic progression is still unknown. In the present study, we have characterized the influence of oncogenic K-Ras on the phenotype and on the signal transduction of epitheloid PANC-1 pancreatic carcinoma cells by generating PANC-1 cell clones, which stably express EGFP(enhanced green fluorescent protein)-K-Ras (V12). EGFP-K-Ras (V12)-expressing cells exhibited a more fibroblastoid cellular phenotype with irregular cell shape and disorganized cytokeratin filaments. Moreover, these cells showed a marked enhancement of their migratory and invasive properties. Stable expression of EGFP-K-Ras (V12) down-regulated the activity of Rac1 and RhoA, resulting in reduced subcortical actin filaments and stress fibers, which might contribute to the epithelial dedifferentiation. Characterization of the activity of mitogen-activated protein kinases revealed that EGFP-K-Ras (V12) enhanced the activity of p38, but did not affect the activities of the Raf/MEK/ERK cascade and JNK. While inhibition of either MEK or JNK activity had no effect on EGFP-K-Ras (V12)-induced migration, inhibition of p38 activity markedly reduced EGFP-K-Ras (V12)-induced migration. Collectively, the results suggest that oncogenic K-Ras enhances the malignant phenotype and identify the mitogen-activated protein kinase p38 as a target to inhibit oncogenic K-Ras-induced pancreatic tumor cell migration.  相似文献   

3.
Pancreatic ductal adenocarcinomas (PDAC) are highly invasive and metastatic neoplasms commonly unresponsive to current drug therapy. Overwhelmingly, PDAC harbors early constitutive, oncogenic mutations in K-Ras(G12D) that exist prior to invasion. Histologic and genetic analyses of human PDAC biopsies also exhibit increased expression of extracellular signal-regulated kinase (ERK) 1/2 and proinvasive matrix metalloproteinases (MMP), indicators of poor prognosis. However, the distinct molecular mechanisms necessary for K-Ras/ERK1/2 signaling and its influence on MMP-directed stromal invasion in primary human pancreatic ductal epithelial cells (PDEC) have yet to be elucidated in three-dimensions. Expression of oncogenic K-Ras(G12D) alone in genetically defined PDECs reveals increased invadopodia and epithelial-to-mesenchymal transition markers, but only when cultured in a three-dimensional model incorporating a basement membrane analog. Activation of ERK2, but not ERK1, also occurs only in K-Ras(G12D)-mutated PDECs cultured in three-dimensions and is a necessary intracellular signaling event for invasion based upon pharmacologic and short hairpin RNA (shRNA) inhibition. Increased active invasion of K-Ras(G12D) PDECs through the basement membrane model is associated with a specific microarray gene expression signature and induction of MMP endopeptidases. Specifically, MMP-1 RNA, its secreted protein, and its proteolytic cleavage activity are amplified in K-Ras(G12D) PDECs when assayed by real-time quantitative PCR, ELISA, and fluorescence resonance energy transfer (FRET). Importantly, shRNA silencing of MMP-1 mimics ERK2 inhibition and disrupts active, vertical PDEC invasion. ERK2 isoform and MMP-1 targeting are shown to be viable strategies to attenuate invasion of K-Ras(G12D)-mutated human pancreatic cancer cells in a three-dimensional tumor microenvironment.  相似文献   

4.
Mutant KRAS in the initiation of pancreatic cancer   总被引:5,自引:0,他引:5  
Pancreatic ductal adenocarcinoma is the most common pancreatic neoplasm. There are approximately 33,000 new cases of pancreatic ductal adenocarcinoma annually in the United States with approximately the same number of deaths. Surgery represents the only opportunity for cure, but this is restricted to early stage pancreatic cancer. Pancreatic ductal adenocarcinoma evolves from a progressive cascade of cellular, morphological and architectural changes from normal ductal epithelium through preneoplastic lesions termed pancreatic intraepithelial neoplasia (PanIN). These PanIN lesions are in turn associated with somatic alterations in canonical oncogenes and tumor suppressor genes. Most notably, early PanIN lesions and almost all pancreatic ductal adenocarcinomas involve mutations in the K-ras oncogene. Thus, it is believed that activating K-ras mutations are critical for initiation of pancreatic ductal carcinogenesis. This has been proven through elegant genetically engineered mouse models in which a Cre-activated K-Ras(G12D) allele is knocked into the endogenous K-Ras locus and crossed with mice expressing Cre recombinase in pancreatic tissue. As a result, mechanistic insights are now possible into how K-Ras contributes to pancreatic ductal carcinogenesis, what cooperating events are required, and armed with this knowledge, new therapeutic approaches can be pursued and tested.  相似文献   

5.
Wang Z  Feng Y  Bardessy N  Wong KK  Liu XY  Ji H 《PloS one》2012,7(5):e37308
Animal models which allow the temporal regulation of gene activities are valuable for dissecting gene function in tumorigenesis. Here we have constructed a conditional inducible estrogen receptor-K-ras(G12D) (ER-K-ras(G12D)) knock-in mice allele that allows us to temporally switch on or off the activity of K-ras oncogenic mutant through tamoxifen administration. In vitro studies using mice embryonic fibroblast (MEF) showed that a dose of tamoxifen at 0.05 μM works optimally for activation of ER-K-ras(G12D) independent of the gender status. Furthermore, tamoxifen-inducible activation of K-ras(G12D) promotes cell proliferation, anchor-independent growth, transformation as well as invasion, potentially via activation of downstream MAPK pathway and cell cycle progression. Continuous activation of K-ras(G12D) in vivo by tamoxifen treatment is sufficient to drive the neoplastic transformation of normal lung epithelial cells in mice. Tamoxifen withdrawal after the tumor formation results in apoptosis and tumor regression in mouse lungs. Taken together, these data have convincingly demonstrated that K-ras mutant is essential for neoplastic transformation and this animal model may provide an ideal platform for further detailed characterization of the role of K-ras oncogenic mutant during different stages of lung tumorigenesis.  相似文献   

6.
A structure-activity relationship study of a K-Ras(G12D) selective inhibitory cyclic peptide, KRpep-2d was performed. Alanine scanning of KRpep-2d focusing on the cyclic moiety showed that Leu7, Ile9, and Asp12 are the key elements for K-Ras(G12D) selective inhibition of KRpep-2d. The cysteine bridging was also examined to identify the stable analog of KRpep-2d under reductive conditions. As a result, the KRpep-2d analog (12) including mono-methylene bridging showed potent K-Ras(G12D) selective inhibition in both the presence and the absence of dithiothreitol. This means that mono-methylene bridging is an effective strategy to obtain a reduction-resistance analog of parent disulfide cyclic peptides. Peptide 12 inhibited proliferation of K-Ras(G12D)-driven cancer cells significantly. These results gave valuable information for further optimization of KRpep-2d to provide novel anti-cancer drug candidates targeting the K-Ras(G12D) mutant.  相似文献   

7.
Mutations in K-Ras GTPase replacing Gly12 with either Asp or Val are common in cancer. These mutations decelerate intrinsic and catalyzed GTP hydrolysis, leading to accumulation of K-Ras-GTP in cells. Signaling cascades initiated by K-Ras-GTP promote cell proliferation, survival, and invasion. Despite functional differences between the most frequent G12D mutation and the most aggressive and chemotherapy resistant G12V mutation, their long-suspected distinct structural features remain elusive. Using NMR, X-ray structures, and computational methods, we found that oncogenic mutants of K-Ras4B, the predominant splice variant of K-Ras, exhibit distinct conformational dynamics when GDP-bound, visiting the “active-like” conformational state similar to the one observed in GTP-bound K-Ras. This behavior distinguishes G12V from wild type and G12D K-Ras4B-GDP. The likely reason is interactions between the aliphatic sidechain of V12 and the Switch II region of K-Ras4BG12V-GDP, which are distinct in K-Ras4BG12D-GDP. In the X-ray structures, crystal contacts reduce the dynamics of the sidechain at position 12 by stabilizing the Switch I region of the protein. This explains why structural differences between G12V and G12D K-Ras have yet not been reported. Together, our results suggest a previously unknown mechanism of K-Ras activation. This mechanism relies on conformational dynamics caused by specific oncogenic mutations in the GDP-bound state. Our findings also imply that the therapeutic strategies decreasing the level of K-Ras-GTP by interfering with nucleotide exchange or by expediting GTP hydrolysis may work differently in different oncogenic mutants.  相似文献   

8.
We identified a novel type of point mutation at the 22nd codon of the K-ras gene in a primary colon cancer. The mutation was C to A transversion substituting lysine (AAG) for normal glutamine (CAG) codon. Biological activity of this mutant K-ras gene was tested by expression of full-length cDNA clones in NIH3T3 cells. Most of the K-ras Lys22-transfected cells exhibited an increased saturation density, a lower serum requirement, and transformed morphology reminiscent to the typical K-ras Val12 transformants. However, the tumorigenicity of K-ras Lys22 transformants in nude mice was significantly less potent than that of K-ras Val12 transformants; only a high copy number transformant produced tumors. Even though the activation is incomplete, the finding that the majority of tumor cells in the specimen carried the K-ras Lys22 mutation suggests that this mutation might be advantageous for growth of tumor cells in vivo.  相似文献   

9.
There is a pressing need for new therapies to treat pancreatic cancer. In principle, this could be achieved by taking advantage of signaling pathways that are active in tumor, but not normal, cells. The work described in this study set out to determine whether the activities of three enhancers, which have been reported to be highly responsive to activated ras, differ in pancreatic tumor cells that express wild-type versus constitutively active mutant forms of K-ras. Surprisingly, the three enhancers are active in four different pancreatic tumor cell lines that express either normal K-ras gene or mutant K-ras. Moreover, reducing the concentration of serum in the growth medium from 10% to 0.5% had relatively little effect on the strength of any of the enhancers, although it drastically affected cell growth. Importantly, our studies also indicate that MEK is active in pancreatic tumor cells that possess wild-type as well as mutant K-ras, even when cultured in medium that severely limits cell growth. These findings support the hypothesis that the Ras/Raf/Mek/Erk pathway may be constitutively active even in pancreatic tumor cells that express wild-type K-ras.  相似文献   

10.
11.
12.
Interferon alpha (IFN-alpha) is used worldwide for the treatment of a variety of cancers. For pancreatic cancer, recent clinical trials using IFN-alpha in combination with standard chemotherapeutic drugs showed some antitumor activity of the cytokine, but the effect was not significant enough to enlist pancreatic cancer as a clinically effective target of IFN-alpha. In general, an improved therapeutic effect and safety are expected for cytokine therapy when given in a gene therapy context, because the technology would allow increased local concentrations of this cytokine in the target sites. In this study, we first examined the antiproliferative effect of IFN-alpha gene transduction into pancreatic cancer cells. The expression of IFN-alpha effectively induced growth suppression and cell death in pancreatic cancer cells, an effect which appeared to be more prominent when compared with other types of cancers and normal cells. Another strategy we have been developing for pancreatic cancer targets its characteristic genetic aberration, K-ras point mutation, and we reported that the expression of antisense K-ras RNA significantly suppressed the growth of pancreatic cancer cells. When these two gene therapy strategies are combined, the expression of antisense K-ras RNA significantly enhanced IFN-alpha-induced cell death (1.3- to 3.5-fold), and suppressed subcutaneous growth of pancreatic cancer cells in mice. Because the 2',5'-oligoadenylate synthetase/RNase L pathway, which is regulated by IFN and induces apoptosis of cells, is activated by double-strand RNA, it is plausible that the double-strand RNA formed by antisense and endogenous K-ras RNA enhanced the antitumor activity of IFN-alpha. This study suggested that the combination of IFN-alpha and antisense K-ras RNA is a promising gene therapy strategy against pancreatic cancer.  相似文献   

13.
Mutation of the K-ras gene is an early event in the development of pancreatic adenocarcinoma and, therefore, RNA interference (RNAi) directed toward mutant K-ras could represent a novel therapy. In this study, we examine the phenotypic and molecular consequences of exposure of pancreatic tumor cells to mutant-specific K-ras small interfering RNA. Specific reduction of activated K-ras via RNAi in Panc-1 and MiaPaca-2 cells resulted in cellular changes consistent with a reduced capacity to form malignant tumors. These changes occur through distinct mechanisms but likely reflect an addiction of each cell line to oncogene stimulation. Both cell lines show reduced proliferation after K-ras RNAi, but only MiaPaca-2 cells showed increased apoptosis. Both cell lines showed reduced migration after K-ras knockdown, but changes in integrin levels were not consistent between the cell lines. Both cell lines showed alteration of the level of GLUT-1, a metabolism-associated gene that is downstream of c-myc, with Panc-1 cells demonstrating decreased GLUT-1 levels, whereas MiaPaca-2 cells showed increased levels of expression after K-ras knockdown. Furthermore, after K-ras RNAi, there was a reduction in angiogenic potential of both Panc-1 and MiaPaca-2 cells. Panc-1 cells increased the level of expression of thrombospondin-1, an endogenous inhibitor of angiogenesis, whereas MiaPaca-2 cells decreased the production of vascular endothelial growth factor, a primary stimulant of angiogenesis in pancreatic tumors. We have found that silencing mutant K-ras through RNAi results in alteration of tumor cell behavior in vitro and suggests that targeting mutant K-ras specifically might be effective against pancreatic cancer in vivo.  相似文献   

14.
Mutation of K-Ras is a frequent oncogenic event in human cancers, particularly cancers of lungs, pancreas, and colon. It remains unclear why some tissues are more susceptible to Ras-induced transformation than others. Here, we globally activated a mutant oncogenic K-Ras allele (K-Ras(G12D)) in mice and examined the tissue-specific effects of this activation on cancer pathobiology, Ras signaling, tumor suppressor, DNA damage, and inflammatory responses. Within 5 to 6 weeks of oncogenic Ras activation, mice develop oral and gastric papillomas, lung adenomas, and hematopoietic hyperproliferation and turn moribund. The oral, gastric, and lung premalignant lesions display activated extracellular signal-regulated kinases (Erk)1/2 and NF-κB signaling as well as activated tumor suppressor and DNA damage responses. Other organs such as pancreas, liver, and small intestine do not exhibit neoplastic progression within 6 weeks following K-Ras(G12D) activation and do not show a potent tumor suppressor response. Even though robust Erk1/2 signaling is activated in all the tissues examined, the pErk1/2 distribution remains largely cytoplasmic in K-Ras(G12D)-refractory tissues (pancreas, liver, and intestines) as opposed to a predominantly nuclear localization in K-Ras(G12D)-induced neoplasms of lung, oral, and gastric mucosa. The downstream targets of Ras signaling, pElk-1 and c-Myc, are elevated in K-Ras(G12D)-induced neoplastic lesions but not in K-Ras(G12D)-refractory tissues. We propose that oncogenic K-Ras-refractory tissues delay oncogenic progression by spatially limiting the efficacy of Ras/Raf/Erk1/2 signaling, whereas K-Ras-responsive tissues exhibit activated Ras/Raf/Erk1/2 signaling, rapidly form premalignant tumors, and activate potent antitumor responses that effectively prevent further malignant progression.  相似文献   

15.
16.
Ras proteins are highly related GTPases that have key roles in regulating growth, differentiation and tumorigenesis. Gene-targeting experiments have shown that, out of the three mammalian ras genes, only K-ras is essential for normal mouse embryogenesis, and that mice deprived of H-ras and/or N-ras show no major phenotype. We generated mice (HrasKI) in which the K-ras gene had been modified to encode H-Ras protein. HrasKI mice produce undetectable amounts of K-Ras but-in contrast to mice homozygous for a null K-ras allele-they are born at the expected mendelian frequency, indicating that H-Ras can be substituted for K-Ras in embryonic development. However, adult HrasKI mice show dilated cardiomyopathy associated with arterial hypertension. Our results show that K-Ras can be replaced by H-Ras in its essential function in embryogenesis, and indicate that K-Ras has a unique role in cardiovascular homeostasis.  相似文献   

17.
目的:构建K-RasGl2D基因突变体慢病毒载体。方法:从病人组织中提取RNA通过RT—PCR反转录获得cDNA作为K-RasGl2D基因模板,通过PCR法扩增出K-RasGl2D基因突变体片段。将酶切的片段克隆入真核表达载体pCDH-CMV—MCS—EF1-RFP中,构建K-RasG12D基因突变体逆转录病毒真核表达载体。将连接产物转化至感受态大肠埃希菌DH5a,挑取转化平板上的细菌克隆,在抗生素培养液中培养过夜后进行PCR鉴定。经测序正确后转染293T细胞系,利用重组质粒PCR及串联基因表达的检测等方法对目的基因的转录与表达进行分析与鉴定。结果:所构建的K-RasGl2D突变体基因逆转录病毒真核表达载体经PCR鉴定和测序鉴定正确,转染293T细胞后可以观察到可检测到高强度表达的RFP荧光信号。结论:成功构建了重组真核表达载体,为下一步建立稳定转染细胞系及进一步研究K-Ras突变在癌症发病中的作用奠定了基础。  相似文献   

18.
《Phytomedicine》2014,21(4):491-496
K-Ras activating mutations are a major problem that drives aggressive tumor growth and metastasis in pancreatic cancer. Currently, there are no effective targeted therapies for this genetically defined subset of cancers harboring oncogenic K-Ras mutations that confer drug resistance, aggressive tumor growth, metastasis and poor clinical outcome. We identified a novel synthetic oleanane triterpenoid compound designated AMR-MeOAc that effectively kills K-Ras mutant pancreatic cancer HPAF-II cells. The cytotoxic effects correlated with apoptosis induction, as was evidenced by increase of apoptosis cells upon the treatment of AMR-MeOAc in HPAF-II cells. Our studies revealed that AMR-MeOAc treatment inhibits cancer associated survival gene survivin. Moreover, AMR-MeOAc also led to down regulation of Akt, ERK1/2 and survivin protein levels. Our results indicate that AMR-MeOAc or its active analogs could be a novel class of anticancer agents against K-Ras driven human pancreatic cancer.  相似文献   

19.
Ras proteins (H-, N-, and K-Ras) operate as molecular switches in signal transduction cascades controlling cell proliferation, differentiation, or apoptosis. The interaction of Ras with its effectors is mediated by the effector-binding loop, but different data about Ras location to plasma membrane subdomains and new roles for some docking/scaffold proteins point to signaling specificities of the different Ras proteins. To investigate the molecular mechanisms for these specificities, we compared an effector loop mutation (P34G) of three Ras isoforms (H-, N-, and K-Ras4B) for their biological and biochemical properties. Although this mutation diminished the capacity of Ras proteins to activate the Raf/ERK and the phosphatidylinositol 3-kinase/AKT pathways, the H-Ras V12G34 mutant retained the ability to cause morphological transformation of NIH 3T3 fibroblasts, whereas both the N-Ras V12G34 and the K-Ras4B V12G34 mutants were defective in this biological activity. On the other hand, although both the N-Ras V12G34 and the K-Ras4B V12G34 mutants failed to promote activation of the Ral-GDS/Ral A/PLD and the Ras/Rac pathways, the H-Ras V12G34 mutant retained the ability to activate these signaling pathways. Interestingly, the P34G mutation reduced specifically the N-Ras and K-Ras4B in vitro binding affinity to Ral-GDS, but not in the case of H-Ras. Thus, independently of Ras location to membrane subdomains, there are marked differences among Ras proteins in the sensitivity to an identical mutation (P34G) affecting the highly conserved effector-binding loop.  相似文献   

20.
To evaluate the antimutagenic role of a mammalian mutY homolog, namely the Mutyh gene, which encodes adenine DNA glycosylase excising adenine misincorporated opposite 8-oxoguanine in the template DNA, we generated MUTYH-null mouse embryonic stem (ES) cells. In the MUTYH-null cells carrying no adenine DNA glycosylase activity, the spontaneous mutation rate increased 2-fold in comparison with wild type cells. The expression of wild type mMUTYH or mutant mMUTYH protein with amino acid substitutions at the proliferating cell nuclear antigen binding motif restored the increased spontaneous mutation rates of the MUTYH-null ES cells to the wild type level. The expression of a mutant mMUTYH protein with an amino acid substitution (G365D) that corresponds to a germ-line mutation (G382D) found in patients with multiple colorectal adenomas could not suppress the elevated spontaneous mutation rate of the MUTYH-null ES cells. Although the recombinant mMUTYH(G365D) purified from Escherichia coli cells had a substantial level of adenine DNA glycosylase activity as did wild type MUTYH, no adenine DNA glycosylase activity was detected in the MUTYH-null ES cells expressing the mMUTYH(G365D) mutant protein. The germ-line mutation (G382D) of the human MUTYH gene is therefore likely to be responsible for the occurrence of a mutator phenotype in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号