首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inheritance of leaf rust and stem rust resistance in 'Roblin' wheat.   总被引:2,自引:0,他引:2  
P L Dyck 《Génome》1993,36(2):289-293
The Canadian common wheat (Triticum aestivum L.) cultivar 'Roblin' is resistant to both leaf rust (Puccinia recondita Rob. ex. Desm.) and stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn.). To study the genetics of this resistance, 'Roblin' was crossed with 'Thatcher', a leaf rust susceptible cultivar, and RL6071, a stem rust susceptible line. A set of F6 random lines was developed from each cross. The random lines and the parents were grown in a field rust nursery artificially inoculated with a mixture of P. recondita and P. graminis isolates and scored for rust reaction. The same material was tested with specific races of leaf rust and stem rust. These data indicated that 'Roblin' has Lr1, Lr10, Lr13, and Lr34 for resistance to P. recondita and Sr5, Sr9b, Sr11, and possibly Sr7a and Sr12 for resistance to P. graminis. In a 'Thatcher' background, the presence of Lr34 contributes to improve stem rust resistance, which appears also to occur in 'Roblin'.  相似文献   

2.
The Indian bread wheat cultivar HD2009 has maintained its partial resistance to leaf rust and stripe rust in India since its release in 1976. To examine the nature, number and mode of inheritance of its genes for partial leaf rust and stripe rust resistance, this cultivar was crossed with cultivar WL711, which is susceptible to leaf rust and stripe rust. The F1, F2, F3 and F5 generations from this cross were assessed separately for adult plant disease severity under artificial epidemic of race 77-5 of leaf rust and race 46S119 of stripe rust. Segregation for rust reaction in the F2, F3 and F5 generations indicated that resistance to each of these rust diseases is based on 2 genes, each with additive effects. Although the leaf rust resistance of HD2009 is similar in expression to that conferred by the gene Lr34, but unlike the wheats carrying this gene, cultivar HD2009 did not show leaf tip necrosis, a morphological marker believed to be tightly linked to the leaf rust resistance gene Lr34. Thus, the non-hypersensitive resistance of HD2009 was ascribed to genes other than Lr34.  相似文献   

3.

Key message

In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies.

Abstract

Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT® and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.  相似文献   

4.
Nonhost resistance of rice to rust pathogens   总被引:1,自引:0,他引:1  
Rice is atypical in that it is an agricultural cereal that is immune to fungal rust diseases. This report demonstrates that several cereal rust species (Puccinia graminis f. sp tritici, P. triticina, P. striiformis, and P. hordei) can infect rice and produce all the infection structures necessary for plant colonization, including specialized feeding cells (haustoria). Some rust infection sites are remarkably large and many plant cells are colonized, suggesting that nutrient uptake occurs to support this growth. Rice responds with an active, nonhost resistance (NHR) response that prevents fungal sporulation and that involves callose deposition, production of reactive oxygen species, and, occasionally, cell death. Genetic variation for the efficacy of NHR to wheat stem rust and wheat leaf rust was observed. Unlike cereal rusts, the rust pathogen (Melampsora lini) of the dicotyledenous plant flax (Linum usitatissimum) rarely successfully infects rice due to an apparent inability to recognize host-derived signals. Morphologically abnormal infection structures are produced and appressorial-like structures often don't coincide with stomata. These data suggest that basic compatibility is an important determinate of nonhost infection outcomes of rust diseases on cereals, with cereal rusts being more capable of infecting a cereal nonhost species compared with rust species that are adapted for dicot hosts.  相似文献   

5.
Tracking wheat rust on a continental scale   总被引:2,自引:0,他引:2  
The rusts of wheat are important fungal plant pathogens that can be disseminated thousands of kilometers across continents and oceans by wind. Rusts are obligate parasites that interact with resistance genes in wheat in a gene-for-gene manner. New races of rust develop by mutation and selection for virulence against rust resistance genes in wheat. In recent years, new races of wheat leaf rust, wheat stripe rust, and wheat stem rust have been introduced into wheat production areas in different continents. These introductions have complicated efforts to develop wheat cultivars with durable rust resistance and have reduced the number of effective rust-resistance genes that are available for use. The migration patterns of wheat rusts are characterized by identifying their virulence against important rust resistance genes in wheat and by the use of molecular markers.  相似文献   

6.
Stripe rust and leaf rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. and P. triticina, respectively, are devastating fungal diseases of common wheat (Triticum aestivum L.). Chinese wheat cultivar Bainong 64 has maintained acceptable adult-plant resistance (APR) to stripe rust, leaf rust and powdery mildew for more than 10?years. The aim of this study was to identify quantitative trait loci/locus (QTL) for resistance to the two rusts in a population of 179 doubled haploid (DH) lines derived from Bainong 64?×?Jingshuang 16. The DH lines were planted in randomized complete blocks with three replicates at four locations. Stripe rust tests were conducted using a mixture of currently prevalent P. striiformis races, and leaf rust tests were performed with P. triticina race THTT. Leaf rust severities were scored two or three times, whereas maximum disease severities (MDS) were recorded for stripe rust. Using bulked segregant analysis (BSA) and simple sequence repeat (SSR) markers, five independent loci for APR to two rusts were detected. The QTL on chromosomes 1BL and 6BS contributed by Bainong 64 conferred resistance to both diseases. The loci identified on chromosomes 7AS and 4DL had minor effects on stripe rust response, whereas another locus, close to the centromere on chromosome 6BS, had a significant effect only on leaf rust response. The loci located on chromosomes 1BL and 4DL also had significant effects on powdery mildew response. These were located at the same positions as the Yr29/Lr46 and Yr46/Lr67 genes, respectively. The multiple disease resistance locus for APR on chromosome 6BS appears to be new. All three genes and their closely linked molecular markers could be used in breeding wheat cultivars with durable resistance to multiple diseases.  相似文献   

7.

Key message

We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL.

Abstract

The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.  相似文献   

8.
Inheritance of partial leaf rust and stripe rust resistance of a Thatcher wheat 90RN2491, earlier reported to carry two doses of the gene pairLr34-Yr18 and the reference line RL6058 (6*Thatcher/PI58548) for theLr34-Yr18 gene pair was studied against predominant and highly virulent Indian races. Thatcher derivatives 90RN2491 and RL6058 were intercrossed as well as crossed with the leaf rust and stripe rust susceptible Indian cultivar WL711. The F1, F2 and F3 generations from these crosses were assessed for rust severity against leaf rust race 77-5 and stripe rust race 46S119. The F2 and F3 generations from the crosses of RL6058 and 90RN2491 with WL711, segregated 15 resistant : 1 susceptible (F2) and 7 homozygous resistant : 8 segregating : 1 homozygous susceptible (F3) ratios, respectively, both for leaf rust and stripe rust severity. Therefore, partial resistance against each of the leaf rust and stripe rust races in both RL6058 and 90RN2491 is ascribed to two independently inherited dominant genes. One of the two genes for leaf rust and stripe rust resistance in 90RN2491 and RL6058 isLr34 and the linked geneYr18, respectively. The second leaf rust resistance gene in both the Thatcher lines segregated independently of stripe rust resistance. Therefore, it is notLr34 and it remains unidentified.  相似文献   

9.

Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. T. dicoccoides accession pau4656 showed resistance against prevailing leaf rust and stripe rust races in India and was used for developing stable introgression lines (IL) in T. durum cv Bijaga yellow and named as IL pau16068. F5 Recombinant inbred lines (F5 RILs) were developed by crossing IL pau16068 with T. durum cultivar PBW114 and RIL population was screened against highly virulent Pt and Pst pathotypes at the seedling and adult plant stages. Inheritance analyses revealed that population segregated for two genes for all stage resistance (ASR) against leaf rust, one ASR gene against stripe rust and three adult plant resistance (APR) genes for stripe rust resistance. For mapping these genes a set of 483 SSR marker was used for bulked segregant analysis. The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on all RILs. Single marker analysis placed all stage leaf rust resistance genes on chromosome 6A and 2A linked to the SSR markers Xwmc256 and Wpaus268, respectively. Likewise one all stage stripe rust resistance gene were mapped on long arm of chromosome 6A linked to markers 6AL-5833645 and 6AL-5824654 and two APR genes mapped on chromosomes 2A and 2B close to the SSR marker Wpaus268 and Xbarc70, respectively. The current study identified valuable leaf rust and stripe rust resistance genes effective against multiple rust races for deployment in the wheat breeding programme.

  相似文献   

10.
Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' x 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance.  相似文献   

11.
Summary Biochemical removal of rust from iron surfaces has been investigated. By immersing a rusted iron plate in the culture medium of an iron-oxidizing bacterium, Thiobacillus ferrooxidans, iron adjacent to the rust was dissolved and the rust was peeled off. Since the amount of dissolved iron per unit iron plate surface area correlated with the concentration of ferric iron in the culture medium, the formation of ferric iron is probably involved in dissolving the iron as is the case for bacterial leaching. In the present study, rust removal in a “continuous” system in which the culture medium was circulated from the fermentor to the rust removal vessel and back again to the fermentor, has also been investigated. Although growth inhibition was observed with the formation of ferric iron precipitates during the operation in this system, it was possible to prevent this precipitation by lowering the pH of the medium during the mixed cultivation of T. ferrooxidans and a sulfur-oxidizing bacterium, T. thiooxidans.  相似文献   

12.
Rust diseases are a major cause of yield loss in wheat worldwide, and are often controlled through the incorporation of resistance genes using conventional phenotypic selection methods. Slow-rusting resistance genes are expressed quantitatively and are typically small in genetic effect thereby requiring multiple genes to provide adequate protection against pathogens. These effects are valuable and are generally considered to confer durable resistance. Therefore an understanding of the chromosomal locations of such genes and their biological effects are important in order to ensure they are suitably deployed in elite germplasm. Attila is an important wheat grown throughout the world and is used as a slow-rusting donor in international spring wheat breeding programs. This study identified chromosomal regions associated with leaf rust and stripe rust resistances in a cross between Attila and a susceptible parent, Avocet-S, evaluated over 3 years in the field. Genotypic variation for both rusts was large and repeatable with line-mean heritabilities of 94% for leaf rust resistance and 87% for stripe rust. Three loci, including Lr46/Yr29 on chromosome 1BL, were shown to provide resistance to leaf rust whereas six loci with small effects conferred stripe rust resistance, with a seventh locus having an effect only by epistasis. Disease scoring over three different years enabled inferences to be made relating to stripe rust pathogen strains that predominated in different years.  相似文献   

13.
Crown rust (Puccinia coronata) is the most important leaf disease in forage ryegrasses (Lolium spp.). In order to evaluate the stability in space and time of crown rust resistance a multisite rust evaluation trial was established by the European breeders association Eucarpia ( Fodder Crops Section). The same seed lots of 33 perennial ryegrass (Lolium perenne) and 18 Italian ryegrass (Lolium multiflorum) varieties were sown in April 2001, 2004 and 2007 at 27 European sites. This paper reports the temporal ranking of the ryegrass varieties for their crown rust susceptibility at the Belgian site and compares this ranking with the mean ranking over the European sites. The crown rust susceptibility was scored in September of each sowing year and of the year after. The rankings of both the perennial and the Italian ryegrass varieties were well correlated between the successive yearly observations at each sowing period. Also the rankings of the varieties of both species were similar over the 3 sowing periods. The rankings at the Belgian site corresponded very well with the mean ranking over the European sites. The crown rust resistance in ryegrass seems to be durable and consistent over a great part of Europe.  相似文献   

14.
锈菌类真菌基因组结构分析研究进展   总被引:2,自引:2,他引:0  
锈菌种群庞大,可以引起许多重要经济作物和林木病害,严重威胁全球粮食和林业生产安全。全基因组分析为锈菌基因功能研究、毒性变异研究及锈菌演化规律研究提供了重要基础,为制定锈病有效防控策略和创制抗锈新材料提供理论依据。本文综述了目前锈菌全基因组分析领域的进展,对锈菌的基因组结构、基因组成、基因组变异等特征进行了归纳分析,对基因组变异与其专性寄生特性的关系、基因组变异对其毒性变异的可能影响等进行了阐述。基因组学将为最终揭示锈菌生活史复杂性和毒性高度变异性的根本成因提供有力工具。  相似文献   

15.
锈寄生菌的分布及其林间发生规律的研究   总被引:2,自引:0,他引:2  
锈寄生菌主要分布于辽宁省的本溪、抚顺和丹东地区,对其在林间发生规律的研究结果表明,锈寄生菌孢子飞散高峰时出现在零点和12点;一年内孢子飞散时期为6月中旬至9月下旬,8月下旬为飞散高峰期。孢子飞散量受控于气象因子,特别与降雨量关系密切,锈寄生菌的潜育期为1个月左右。落叶松褐锈病的发生程度随着锈寄生菌寄生率的逐年增加而减轻,表明锈寄生菌对落叶松褐锈病有一定的控制作用。  相似文献   

16.
The recent outbreak of a new wheat stem rust race capable of parasitizing many commercial wheat cultivars highlights the need for durable disease resistance in crop plants. More advanced breeding approaches using quantitative disease resistance genes and resistance gene pyramids are being used to combat wheat stem rust and other diseases, though widespread adoption of these breeding methodologies is needed to maintain resistance efficacy. Advances in understanding the molecular basis of plant disease resistance at both host and nonhost levels offers further possibilities for stem rust resistance using biotechnological approaches. However, truly durable resistance to wheat stem rust and other phytopathogens seems an unlikely prospect in the face of continually evolving pathogen populations.  相似文献   

17.
Growing resistant wheat varieties is a key method of controlling two important wheat diseases, leaf rust and stripe rust. We analyzed quantitative trait loci (QTL) to investigate adult plant resistance (APR) to these rusts, using 141 F5 RILs derived from the cross ‘Avocet-YrA/Francolin#1’. Phenotyping of leaf rust resistance was conducted during two seasons at Ciudad Obregon, Mexico, whereas stripe rust was evaluated for two seasons in Toluca, Mexico, and one season in Chengdu, China. The genetic map was constructed with 581 markers, including diversity arrays technology and simple sequence repeat. Significant loci for reducing leaf rust severity were designated QLr.cim-1BL, QLr.cim-3BS.1, QLr.cim-3DC, and QLr.cim-7DS. The six QTL that reduced stripe rust severity were designated QYr.cim-1BL, QYr.cim-2BS, QYr.cim-2DS, QYr.cim-3BS.2, QYr.cim-5AL, and QYr.cim-6AL. All loci were conferred by Francolin#1, with the exception of QYr.cim-2DS, QYr.cim-5AL, and QYr.cim-6AL, which were derived from Avocet-YrA. Closely linked markers indicated that the 1BL locus was the pleiotropic APR gene Lr46/Yr29. QYr.cim-2BS was a seedling resistance gene designated as YrF that conferred intermediate seedling reactions and moderate resistance at the adult plant stage in both Mexican and Chinese environments. Significant additive interactions were detected between the six QTL for stripe rust, but not between the four QTL for leaf rust. Furthermore, we detected two new APR loci for leaf rust in common wheat: QLr.cim-3BS.1 and QLr.cim-7DS.  相似文献   

18.
Proceedings: Preservation of rust fungi in liquid nitrogen   总被引:1,自引:0,他引:1  
J L Cunningham 《Cryobiology》1973,10(5):361-363
Spores of rust fungi can be expected to retain viability without loss of infectivity for at least several years when stored in liquid nitrogen (?196 °C). Addition of liquid suspending media is harmful and not necessary. Some rust fungi experience cold-induced dormancy when exposed to less than 0 °C for a minute or longer but germinability is dependably restored on applying a heat shock by heating the spores to 40 °C for at least 15 sec during or after thawing. Most rust fungi are not sensitive to moisture content at the time of freezing but Puccinia striiformis must be vacuum dried before freezimg. The need for heat shock may not show up until several days after thawing. All of the rust strains tested to date have retained their properties to the extent tested and for the duration of storage. Data are available for up to 11 years. Preliminary experiments to preserve saprophytic mycelial cultures of P. graminis have so far failed, with and without use of 10% glycerol and 5% DMSO. The successful preservation of rust spores has made feasible the development of a collection of living rust fungi at ATCC beginning in 1965 and which now has over 80 strains in 20 species in 7 genera.  相似文献   

19.
R L Innes  E R Kerber 《Génome》1994,37(5):813-822
Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression method of crossing hexaploid wheat with T. tauschii has the advantages of enabling selection for maximum expression of resistance in the background hexaploid genotype and gene transfer into an agronomically superior cultivar.  相似文献   

20.
D Bai  G J Scoles  D R Knott 《Génome》1994,37(3):410-418
Six accessions of Triticum triaristatum (Willd) Godr. &Gren. (syn. Aegilops triaristata) (6x, UUMMUnUn), having good resistance to both leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm) races and stem rust (P. graminis f.sp. tritici Eriks. &Henn.) races, were successfully crossed with both susceptible durum wheats (T. turgidum var. durum L., 2n = 28, AABB) and bread wheats (T. aestivum, 2n = 42, AABBDD). In some crosses, embryo rescue was necessary. The T. triaristatum resistance was expressed in all F1 hybrids. Backcrossing of the F1 hybrids to their wheat parents to produce BC1F1 plants was more difficult (seed set 0-7.14%) than to produce F1 hybrids (seed set 12.50-78.33%). The low female fertility of the F1 hybrids was due to low chromosome pairing. Only gametes with complete or nearly complete genomes from the F1 hybrids were viable. In BC2F4 populations from the cross MP/Ata2//2*MP, monosomic or disomic addition lines (2n = 21 II + 1 I or 22 II) with resistance to leaf rust race 15 (IT 1) were selected. In BC2F2 populations from the crosses CS/Ata4//2*MP and MP/Ata4//2*MP, monosomic or disomic addition lines with resistance to either leaf rust race 15 or stem rust race 15B-1 (both IT 1) were selected. Rust tests and cytology on the progeny of the disomic addition lines confirmed that the genes for rust resistance were located on the added T. triaristatum chromosomes. The homoeologous groups of the T. triaristatum chromosomes in the addition lines from the crosses MP/Ata2//2*MP, CS/Ata4//2*MP, and MP/Ata4//2*MP were determined to be 5, 2, and 7, respectively, through the detecting of RFLPs among genomes using a set of homoeologous group specific wheat cDNA probes. The addition lines with resistance to leaf rust race 15 from the crosses MP/Ata2//2*MP and CS/Ata4//2*MP were resistant to another nine races of leaf rust and the addition line with resistance to stem rust race 15B-1 from the cross MP/Ata4//2*MP was resistant to another nine races of stem rust as were their T. triaristatum parents. Since such genes provide resistance against a wide spectrum of rust races they should be very valuable in wheat breeding for rust resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号