首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Bacillusfirmus strain 37 produces the cyclomaltodextrin glucanotransferase (CGTase) enzyme and CGTase produces cyclodextrins (CDs) through a starch cyclization reaction. The strategy for the cloning and expression of recombinant CGTase is a potentially viable alternative for the economically viable production of CGTase for use in industrial processes. The present study used Bacillus subtilis WB800 as a bacterial expression host for the production of recombinant CGTase cloned from the CGTase gene of B. firmus strain 37. The CGTase gene was cloned in TOPO-TA® plasmid, which was transformed in Escherichia coli DH5α. The subcloning was carried out with pWB980 plasmid and transformation in B. subtilis WB800. The 2xYT medium was the most suitable for the production of recombinant CGTase. The enzymatic activity of the crude extract of the recombinant CGTase of B. subtilis WB800 was 1.33 µmol β-CD/min/mL, or 7.4 times greater than the enzymatic activity of the crude extract of CGTase obtained from the wild strain. Following purification, the recombinant CGTase exhibited an enzymatic activity of 157.78 µmol β-CD/min/mL, while the activity of the CGTase from the wild strain was 9.54 µmol β-CD/min/mL. When optimal CDs production conditions for the CGTase from B. firmus strain 37 were used, it was observed that the catalytic properties of the CGTase enzymes were equivalent. The strategy for the cloning and expression of CGTase in B. subtilis WB800 was efficient, with the production of greater quantities of CGTase than with the wild strain, offering essential data for the large-scale production of the recombinant enzyme.

  相似文献   

2.
The reaction conditions for γ-CD production by a purified CGTase from Brevibacterium sp. No. 9605 were investigated. The optimum pH and temperature for γ-CD formation were 7.0 and 50°C, respectively. The addition of calcium ion increased heat stability of the CGTase and the CDs formation was affected by the concentration of calcium ion. In the presence of ethanol, the yield of γ-CD from soluble starch was increased.  相似文献   

3.
Cyclodextrins (CDs) are cyclic oligosaccharides of wide industrial application, whose synthesis is catalyzed by Cyclodextrin glycosyltransferase (CGTase) from starch. Here, CDs were produced using CGTase from Bacillus circulans DF 9R in continuous process and an ultrafiltration membrane reactor. The batch process was conducted as a control. This method allowed increasing the yield from 40 to 55.6% and the productivity from 26.1 to 99.5 mg of CD per unit of enzyme. The method also allowed obtaining a high‐purity product. The flow rate remained at 50% of its initial value after 24 h of process, improving the results described in the literature for starch hydrolysis processes. CGTase remained active throughout the process, which could be explained by the protective effect of the substrate and reaction products on CGTase stability. In addition, batch processes were developed using starches from different sources. We concluded that any of the starches studied could be used as substrate for CD production with similar yields and product specificity. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:695–699, 2015  相似文献   

4.
Cyclodextrin glycosyltransferase (CGTase) activity was monitored inBacillus macerans culture fluids up to 56 h incubation time using glucose (G1), maltose (G2), maltotriose (G3), maltoheptaose (G7), α-,β-,γ-cyclodextrins (CDs) and soluble starch as carbon sources. Highest maximum specific growth rates (μmax) were observed with glucose, γ-CD and soluble starch (μmax values were 0.86, 0.74 and 0.69/h, respectively) while the maximum viable cell numbers were always within the range of 2.3–7.1×1011 CFU/mL independently of the carbon source used. Highest CGTase production was found in the presence of soluble starch and G7 (55.0 and 35.4 nkat/mL, respectively), these saccharides being easily transformed to CDs by CGTase. Moreover, when culture media were supplemented with cyclic malto-oligosaccharides the CGTase activities were about twice higher (19.6–20.6 nkat/mL) than those obtained with the linear G2 and G3 saccharides (8.9 and 11.3 nkat/mL, respectively) which give rise only to negligible quantities of CDs. CDs, which are the major end products of the action of CGTase, are regarded thus as the likely physiological inducers of the enzyme.  相似文献   

5.
The novel reductive graphene oxide‐based magnetic molecularly imprinted poly(ethylene‐co‐vinyl alcohol) polymers (rGO@m‐MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m‐MIPs was prepared by surface molecular imprinting technique. Besides, Fe3O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3O4 was in situ synthesis. Different from functional monomer and cross‐linker in traditional molecularly imprinted polymer, here, 3,4‐dichlorobenzidine was employed as dummy molecular and poly(ethylene‐co‐vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography‐mass spectrometry (GC‐MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035–0.0070 µg l−1 and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A novel molecular imprinting electrochemiluminescence sensor for detecting chiral cinchonine molecules was developed with a molecularly imprinted polymer membrane on the surfaces of magnetic microspheres. Fe3O4@Au nanoparticles modified with 6‐mercapto‐beta‐cyclodextrin were used as a carrier, cinchonine as a template molecule, methacrylic acid as a functional monomer and N ,N ′‐methylenebisacrylamide as a cross‐linking agent. Cinchonine was specifically recognized by the 6‐mercapto‐beta‐cyclodextrin functional molecularly imprinted polymer and detected based on enhancement of the electrochemiluminescence intensity caused by the reaction of tertiary amino structures of cinchonine molecules with Ru(bpy)32+. Cinchonine concentrations of 1 × 10?10 to 4 × 10?7 mol/L showed a good linear relationship with changes of the electrochemiluminescence intensity, and the detection limit of the sensor was 3.13 × 10?11 mol/L. The sensor has high sensitivity and selectivity, and is easy to renew. It was designed for detecting serum samples, with recovery rates of 98.2% to 107.6%.  相似文献   

7.
Summary Various kinds of substrates were tested for cyclodextrin production with cyclodextrin glucanotransferase (CGTase) from Bacillus megaterium. The enzyme formed cyclodextrin from different kinds of starch, dextrins, amylose, and amylopectin. However, the highest degree of conversion was obtained from starch. Corn starch appeared to be the best substrate – the cyclodextrin yield was 50.9%. The effect of molecular mass and preliminary treatment of starch with α-amylase on the CD yield was investigated. It was proved that CGTase preferred native starch with high molecular mass and low dextrose equivalent. The preliminary treatment with α-amylase occurred to be inefficient and unnecessary since it did not lead to an increase in the CD yield. Some of the substrates were treated with pullulanase. The effect of debranching was highest in the case of corn starch: the cyclodextrin yield increased by 10%.  相似文献   

8.
Summary The effect of PEG and other polyols additives on cyclodextrins (CDs) production by Bacillus macerons cyclomaltodextrin-glycosyl-transferase (CGTase) was investigated. Mannitol, glycerol and PEG-200 (20%,v/v) enhanced the enzymatic production yield regardless of substrate concentration. Furthermore, the PEG-200 addition increased the thermostability of the CGTase.  相似文献   

9.
Activity characteristics and kinetic aspects of a cyclodextrin glycosyltransferase (CGTase) from Bacillus circulans DF 9R were studied. A mixture of α-, β- and γ-cyclodextrins (CDs), glucose, maltose and negligible amounts of longer linear dextrins were produced from gelatinized amylose, amylopectin and starch from different sources. In the coupling reaction, CDs were the substrates in the presence of acceptors such as maltose and/or longer oligosaccharides. From oligosaccharides formed by three or more glucose units, this enzyme produced linear chains of several lengths which were then cyclized. CGTase catalytic efficiency was compared employing an analytical grade starch and cassava starch for food use. Since the results obtained were similar for both starches, the use of an economic starch is an advantage. CGTase was inhibited by the substrate and its own products. Starch concentrations over 20 mg/mL inhibited the cyclizing activity. CDs behaved as competitive inhibitors and maltose as an uncompetitive inhibitor while maltotriose showed a mixed inhibition pattern. Limit dextrins showed a scarce inhibitory effect on enzyme activity. CD production could be improved with an ultrafiltration membrane reactor for continuous removal of the products; the starch concentration should be maintained below an inhibitory concentration and limit dextrins would remain in the reactor without affecting enzyme activity.  相似文献   

10.
Cyclodextrins (CDs) are used in food, pharmaceutical, and chemical industries, as well as agriculture and environmental engineering. Cyclodextrin glucanotransferase (CGTase) is an important industrial extracellular enzyme which is used to produce CDs and oligosaccharides. We previously developed a novel yeast-surface CGTase expression system which was used for the production of CDs from starch. In the present study, we showed that the presence of CDs may increase the ethanol tolerance of microorganisms. The cell numbers of Saccharomyces cerevisiae and Escherichia coli in the presence of β-cyclodextrin and ethanol were 1,000-fold and 10-fold higher than that without CDs. The yeast strain with the immobilized CGTase produced 13 g CDs/l and 1.8 g ethanol/l when it was incubated in yeast medium supplemented with 4% starch. The effect of CDs on microorganisms suggests a potential application for the co-production of CDs and ethanol.  相似文献   

11.
The β‐carotene embedded amylose microparticles (BC‐AmMPs) were prepared in one‐step by utilizing the unique catalytic activity of amylosucrase from Deinococcus geothermalis (DgAS), which synthesizes linear amylose chains using sucrose as the sole substrate. Synthesized amylose chains self‐assembled with β‐carotene to form well‐defined spherical microparticles with an encapsulation yield of 65%. The BC‐AmMPs produced (average diameter ~8 µm) were bright orange due to the embedded β‐carotene, and this was confirmed by Raman analysis. XRD showed BC‐AmMPs had a B‐type amylose crystal structure with a degree of crystallinity lower than that of AmMPs. This lower crystallinity of AmMP after BC encapsulation was confirmed by DSC analysis. Decreased enthalpy of gelatinization (ΔHgel) of BC‐AmMP implied that molecular order within the amylose microstructure was influenced by the presence of BC. The stability of BC against environmental stresses, such as UV light and oxidative stress, was significantly enhanced by its encapsulation. The authors propose a new approach to the preparation of an amylose based carrier system for active compounds or expensive food ingredients with poor stabilities during storage or processing. Given that amylose is a safe food material, the devised encapsulation system will find wide range of practical applications in the food industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1640–1646, 2017  相似文献   

12.
Cyclodextrin glycosyltransferase (CGTase; E.C. 2.4.1.19) is an industrially important enzyme, which is used to produce cyclodextrins (CDs). In this research, we report the use of experimental factorial design to find the best conditions of pH and temperature for CGTase production by Bacillus circulans var. alkalophilus. The optimized calculated values for the tested variables were, respectively, pH 9.7 and temperature 36oC, with a CGTase activity of 615 U mL−1. The CGTase production was further studied with the optimized process parameters on submerged cultivations (SC) and solid-state cultivations (SSC) using soybean industrial fibrous residue (SIFR). The maximum CGTase activity obtained on SC was 1,155 U mL−1 under aerobic conditions. Cell growth and CGTase synthesis in SSC using SIFR as substrate was excellent, with CGTase activity of 32,776 U g(SIFR) −1. These results strongly support the use of SIFR for CGTase production since it is a non-expensive residue.  相似文献   

13.

Background

Previously, we validated capability of human adipose tissue‐derived mesenchymal stem cells (AT‐MSC) to serve as cellular vehicles for gene‐directed enzyme prodrug molecular chemotherapy. Yeast fusion cytosine deaminase : uracil phosphoribosyltransferase expressing AT‐MSC (CDy‐AT‐MSC) combined with systemic 5‐fluorocytosine (5FC) significantly inhibited growth of human colon cancer xenografts. We aimed to determine the cytotoxic efficiency to other tumour cells both in vitro and in vivo.

Methods

CDy‐AT‐MSC/5FC‐mediated proliferation inhibition against a panel of human tumour cells lines was evaluated in direct and indirect cocultures in vitro. Antitumour effect was tested on immunodeficient mouse model in vivo.

Results

Although culture expansion of CDy‐AT‐MSC sensitized these cells to 5FC mediated suicide effect, expanded CDy‐AT‐MSC/5FC still exhibited strong bystander cytotoxic effect towards human melanoma, glioblastoma, colon, breast and bladder carcinoma in vitro. Most efficient inhibition (91%) was observed in melanoma A375 cell line when directly cocultured with 2% of therapeutic cells CDy‐AT‐MSC/5FC. The therapeutic paradigm of the CDy‐AT‐MSC/5FC system was further evaluated on melanoma A375 xenografts on nude mice in vivo. Complete regression in 89% of tumours was achieved when 20% CDy‐AT‐MSC/5FC were co‐injected along with tumour cells. More importantly, systemic CDy‐AT‐MSC administration resulted in therapeutic cell homing into subcutaneous melanoma and mediated tumour growth inhibition.

Conclusions

CDy‐AT‐MSC capability of targeting subcutaneous melanoma offers a possibility to selectively produce cytotoxic agent in situ. Our data further demonstrate beneficial biological properties of AT‐MSC as a cellular vehicle for enzyme/prodrug therapy approach to molecular chemotherapy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Liu Z  Jia F  Wang W  Wang C  Liu Y 《Luminescence》2012,27(4):297-301
A novel method was developed using molecular imprinting technology (MIT) coupled with flow‐injection chemiluminescence (FI‐CL) for highly sensitive detection of phenformin hydrochloride (PH). The phenformin imprinted polymer was synthesized with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross‐linker. Newly synthesized molecularly imprinted polymer (MIP) particles were packed into a column as a selective recognition element for determination of PH. A CL method for the determination of PH was developed based on the CL reaction of PH with N‐bromosuccinimide sensitized by eosin Y in basic media. The optimization of detection conditions was investigated. The CL intensity responded linearly to the concentration of PH in the range 0.09–2.0 µg/mL, with a correlation coefficient of 0.9920. The detection limit was 0.031 µg/mL. The relative standard deviation for the determination of 1.0 µg/mL PH solution was 1.0% (n = 11). The method was applied to the determination of PH in urine samples, with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The effects of temperature on 6-O-α-maltosyl cyclodextrins (G2-CDs) production from α- maltosylfluoride (α-G2F) and cyclodextrins (CDs) by the transfer action of debranching enzymes such as pullulanase and isoamylase were studied.

The amounts of 6-O-α-maltosyl α-cyclodextrin (G2-α-CD) production by purified pullulanase from Aerobacter aerogenes (A-pullulanase) and from Bacillus acidopullulyticus (B-pullulanase) increased with a rise in temperature, e.g., the amounts at 60°C were about 1.5 times higher than those at 30°C. Initial transfer ratios (G2-α-CD formed/α-G2F consumed) of A-pullulanase and B- pullulanase were about 62% and 25% (at 40°C), and about 50% and 15% (at 20°C), respectively. The transfer ratios of both A-pullulanase and B-pullulanase in the reaction using β-CD or γ-CD as acceptor also increased with a rise in temperature.

The transfer ratios were little affected by any change in temperature or any kind of acceptor CDs, in the case of isoamylase, and were about 60%.  相似文献   

16.
α-D-Mannosyl-maltotriose (Man-G3) were synthesized from methyl α-mannoside and maltotriose by the transfer action of α-mannosidase. (Man-G3)-βCD and (Man-G3)2-βCD were produced in about 20% and 4% yield, respectively when Aerobacter aerogenes pullulanase (160 units per 1 g of Man-G3) was incubated with the mixture of 1.6 M Man-G3 and 0.16 M βCD at 50°C for 4 days. The reaction products, (Man-G3)-βCD were separated to three peaks by HPLC analysis on a YMC-PACK A-323-3 column and (Man-G3)2-βCD were separated to several peaks by HPLC analysis on a Daisopak ODS column. The major product of (Man-G3)-βCDs was identified as 6-O-α-(63-O-α-D-mannosyl-maltotriosyl)-βCD by FAB-MS and NMR spectroscopies. The structures of (Man-G3)2-βCDs were analyzed by TOF-MS and NMR spectroscopies, and confirmed by comparison of elution profiles of their hydrolyzates by α-mannosidase and glucoamylase on a graphitized carbon column with those of the authentic di-glucosyl-βCDs. The structures of three main components of (Man-G3)2-βCDs were identified as 61,62-, 61,63- and 61,64-di-O-(63-O-α-D-mannosyl-maltotriosyl)-βCD.  相似文献   

17.
Uniform molecular imprinting microspheres were prepared using precipitation polymerization with thifensulfuron‐methyl (TFM) as template, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross‐linker. TFM could be selectively adsorbed on the molecularly imprinted polymers (MIPs) matrix through the hydrogen bonding interaction and the adsorbed TFM could be sensed by its strikingly enhancing effect on the weak chemiluminescence (CL) reaction between luminol and hydrogen peroxide. On this basis, a novel CL sensor for the determination of TFM using MIPs as recognition elements was established. The logarithm of net CL intensity (ΔI) is linearly proportional to the logarithm of TFM concentration (C) in the range from 1.0 × 10?9 to 5.0 × 10?5 mol L?1 with a detection limit of 8.3 × 10?10 mol L?1 (3σ). The results demonstrated that the MIP–CL sensor was reversible and reusable and that it could strikingly improve the selectivity and sensitivity of CL analysis. Furthermore, it is suggested that the CL enhancement of luminol–H2O2 by TFM might be ascribed to the enhancement effect of CO2, which came from TFM hydrolysis in basic medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The further evolution of molecularly imprinted polymer science and technology necessitates the development of robust predictive tools capable of handling the complexity of molecular imprinting systems. A combination of the rapid growth in computer power over the past decade and significant software developments have opened new possibilities for simulating aspects of the complex molecular imprinting process. We present here a survey of the current status of the use of in silico-based approaches to aspects of molecular imprinting. Finally, we highlight areas where ongoing and future efforts should yield information critical to our understanding of the underlying mechanisms sufficient to permit the rational design of molecularly imprinted polymers.  相似文献   

19.
Summary: Defects in expression of imprinted genes are believed to cause developmental abnormalities and play a role in carcinogenesis. To determine whether spontaneous imprinting defects may occur in mouse embryos, we studied the expression of two imprinted genes H19 and Igf2 in individual postimplantation 7.5 d.p.c. and 8.5 d.p.c. embryos. Biallelic expression of H19 was found in 1.6% of the embryos, whereas biallelic expression of Igf2 was found in 0.5% of the embryos. The loss of H19 imprinting (LOI) observed in a small fraction of early postimplantation embryos may be purely stochastic. Alternatively, since we never observed it in an inbred background, it may depend on genetic factors acting in trans. Either mechanism could explain the occurrence of polymorphic imprinting as well as the genesis of sporadic imprinting defects, including cancer. The frequency of LOI of H19 was higher than the incidence of sporadic imprinting disorders in humans (about 1 in 20,000). This contradiction may be explained by different incidence of imprinting errors in different imprinted regions of the genome, in different species, or by loss of the majority of nonmosaic embryos with imprinting defects before birth. genesis 31:11–16, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

20.
Ficko-Blean E  Stuart CP  Boraston AB 《Proteins》2011,79(10):2771-2777
CPF_2247 from Clostridium perfringens ATCC 13124 was identified as a putative carbohydrate‐active enzyme by its low sequence identity to endo‐β‐1,4‐glucanases belonging to family 8 of the glycoside hydrolase classification. The X‐ray crystal structure of CPF_2247 determined to 2.0 Å resolution by single‐wavelength anomalous dispersion using seleno‐methionine‐substituted protein revealed an (α/α)6 barrel fold. A large cleft on the surface of the protein contains residues that are structurally conserved with key elements of the catalytic machinery in clan GH‐M glycoside hydrolases. Assessment of CPF_2247 as a carbohydrate‐active enzyme disclosed α‐glucanase activity on amylose, glycogen, and malto‐oligosaccharides. Proteins 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号