首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
BACKGROUND: The jet-in-air cell sorters currently available are not very suitable for sorting potentially biohazardous material under optimal conditions because they do not protect operators and samples as recommended in the guidelines for safe biotechnology. To solve this problem we have adapted a cell sorting system to a special biosafety cabinet that satisfies the requirements for class II cabinets. With aid of this unit, sorting can be performed in conformance with the recommendations for biosafety level 2. METHODS: After integrating a modified fluorescence-activated cell sorter (FACS) Vantage into a special biosafety cabinet, we investigated the influence of the laminar air flow (LAF) inside the cabinet on side stream stability and the analytical precision of the cell sorter. In addition to the routine electronic counting of microparticles, we carried out tests on the containment of aerosols, using T4 bacteriophage as indicators, to demonstrate the efficiency of the biosafety cabinet for sorting experiments performed under biosafety level 2 conditions. RESULTS: The experiments showed that LAF, which is necessary to build up sterile conditions in a biosafety cabinet, does not influence the conditions for side stream stability or the analytical precision of the FACS Vantage cell sorting system. In addition, tests performed to assess aerosol containment during operation of the special biosafety cabinet demonstrated that the cabinet-integrated FACS Vantage unit (CIF) satisfies the conditions for class II cabinets. In the context of gene transfer experiments, the CIF facility was used to sort hematopoietic progenitor cells under biosafety level 2 conditions. CONCLUSIONS: The newly designed biosafety cabinet offers a practical modality for improving biosafety for operators and samples during cell sorting procedures. It can thus also be used for sorting experiments with genetically modified organisms in conformance with current biosafety regulations and guidelines.  相似文献   

2.
Open fronted safety cabinets in ventilated laboratories   总被引:1,自引:0,他引:1  
Open fronted Class I and II microbiological safety cabinets (MSCs) are required by the British Standard 5726 to provide similar levels of operator protection (viz. 105). In laboratories that are naturally ventilated large numbers of both types of cabinets have been shown to exceed this requirement consistently over a number of years. The designs of some mechanically ventilated laboratories, however, produce excessive turbulence and draughts that can prejudice containment at the front aperture. On-site commissioning tests to determine operator protection factor are now well established and are recognized as being essential to the setting up of all open fronted cabinets in both ventilated and unventilated laboratories. This paper shows that where environmental conditions induce unsatisfactory cabinet containment, adjustments to air supply and exhaust systems can be made which will enable both Class I and II cabinets to produce operator protection factors in excess of 105. When compatibility is achieved between the local environment and the cabinets it is demonstrated that disturbances at the front aperture, caused by operator working procedures or by disturbances due to personnel movement within the room, have similar effects on both Class I and II cabinets. Once performance levels have been satisfactorily achieved, regular containment testing has shown that consistent performance can be maintained. These aspects of open fronted safety cabinet performance are discussed in relation to ventilated laboratories suitable for work with the human immunodeficiency virus (HIV). Of paramount importance in the future is the necessity to design laboratory air systems that will be compatible with satisfactory safety cabinet performance—a relatively new requirement in ventilation system specifications.  相似文献   

3.
A modified microbiological safety cabinet which can be used as a class II and a class III safety cabinet has been bacteriologically tested. This cabinet makes use of a high-speed down-flow air curtain in the front opening to minimize the amount of air escaping over the arms of the operator. By using artificial aerosols and a dummy or a test person placing his arms into the working opening of the cabinet, a transfer from the inside to the environment was detected only when the highest concentration of the test aerosol was used. Since the number of bacteria detected was very low, this is considered to be acceptable. when the cabinet was used as a class III type, with a glove panel mounted in the front opening, leakage from the environment occurred. This could be completely prevented by fixing tape over the hinge of the front panel.The conclusion is drawn that this type of biohazard hood can be safely used as a class II and a class III microbiological safety cabinet, provided the construction of the hinge of the front panel will be adapted to prevent transfer from the environment to the working area.  相似文献   

4.
猪瘟DNA疫苗在猪体及环境的生物安全性研究   总被引:1,自引:0,他引:1  
DNA疫苗生物安全性是其走向临床所须解决的关键问题之一。以猪瘟DNA疫苗为研究对象 ,探讨了其两个方面的生物安全性问题。一方面 ,将两种不同的猪瘟DNA疫苗质粒免疫猪后 ,利用PCR技术分析了其与猪细胞基因组整合的可能性 ,结果在灵敏度为 30拷贝的检测条件下 ,未发现猪瘟DNA疫苗整合到细胞基因组 ;另一方面 ,以PCR技术检测了免疫现场环境样品 ,以分析猪瘟DNA疫苗上的E2基因、CMV启动子基因和抗性基因是否在环境细菌中发生转移和扩散。结果未发现DNA疫苗转化环境细菌的直接证据。因此认为DNA疫苗对猪体和环境是安全的。  相似文献   

5.
A biological safety cabinet was tested to determine the effect of crossdrafts (such as those created by normal laboratory activity or ventilation) upon the ability of the cabinet to protect both experiments and investigators. A simple crossdraft, controllable from 50 to 200 feet per min (fpm; 15.24 to 60.96 m/min), was created across the face of the unit. Modifications of standardized procedures involving controlled bacterial aerosol challenges provided stringent test conditions. Results indicated that, as the crossflow velocities exceeded 100 fpm, the ability of the cabinet to protect either experiments or investigators decreased logarithmically with increasing crossdraft speed. Because 100 fpm is an airspeed easily achieved by some air conditioning and heating vents (open windows and doorways may create velocities far in excess of 200 fpm), the proper placement of a biological safety cabinet within the laboratory--away from such disruptive air currents--is essential to satisfactory cabinet performance.  相似文献   

6.
A biological safety cabinet was tested to determine the effect of crossdrafts (such as those created by normal laboratory activity or ventilation) upon the ability of the cabinet to protect both experiments and investigators. A simple crossdraft, controllable from 50 to 200 feet per min (fpm; 15.24 to 60.96 m/min), was created across the face of the unit. Modifications of standardized procedures involving controlled bacterial aerosol challenges provided stringent test conditions. Results indicated that, as the crossflow velocities exceeded 100 fpm, the ability of the cabinet to protect either experiments or investigators decreased logarithmically with increasing crossdraft speed. Because 100 fpm is an airspeed easily achieved by some air conditioning and heating vents (open windows and doorways may create velocities far in excess of 200 fpm), the proper placement of a biological safety cabinet within the laboratory--away from such disruptive air currents--is essential to satisfactory cabinet performance.  相似文献   

7.
Oversight of recombinant DNA research by the National Institutes of Health (NIH) is predicated on ethical and scientific responsibilities that are akin, in many ways, to those that pertain to the oversight of animal research. The NIH system of oversight, which originated more than 25 years ago, is managed by the NIH Office of Biotechnology Activities (OBA), which uses various tools to fulfill its oversight responsibilities. These tools include the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH Guidelines) and the Recombinant DNA Advisory Committee. The OBA also undertakes special initiatives to promote the analysis and dissemination of information key to our understanding of recombinant DNA, and in particular, human gene transfer research. These initiatives include a new query-capable database, an analytical board of scientific and medical experts, and conferences and symposia on timely scientific, safety, and policy issues. Veterinary scientists can play an important role in the oversight of recombinant DNA research and in enhancing our understanding of the many safety and scientific dimensions of the field. These roles include developing appropriate animal models, reporting key safety data, enhancing institutional biosafety review, and promoting compliance with the NIH Guidelines.  相似文献   

8.
An evaluation of a special safety cabinet housing a high-speed centrifuge was made. The cabinet enclosed both the top access port and the drive and pumping machinery of the centrifuge. A titanium rotor was loaded with tubes containing a bacterial culture, weakened, and driven until rotor rupture occurred. There were several bent and broken components in the centrifuge, and bacteria leaked from the vacuum chamber. Although the forces were sufficient to displace the cabinet, none of the test bacteria were found outside the cabinet.  相似文献   

9.
【背景】近年来埃博拉病毒等病原微生物大范围传播引发了严重的公共安全问题,生物实验室安全管理受到各国政府的高度重视。【目的】了解国内高校病原微生物的管理状况,为实验室生物安全管理提供针对性举措。【方法】在查阅资料、与生物安全管理人员座谈的基础上设计调查问卷,对50所高校的341名师生进行调查并统计分析。【结果】国内高校实验室在病原微生物的安全教育、安全管理制度建设、实验室规范化建造、生物废弃物处置、实验室安全设施维护等方面存在明显不足。【结论】高校应严格落实安全管理责任制,采取措施消除各类安全隐患。  相似文献   

10.
基因工程植物的安全性问题   总被引:9,自引:1,他引:8  
转基因植物的研究进展很迅速,但基因工程植物是否安全一直争论不休,主要表现在转基因食品的安全性及生态安全性问题上.转基因食品的安全性涉及这些食品的过敏性、毒性以及抗生素标记基因的安全性几个方面.转基因植物的生态安全性包括基因漂流、是否能诱发昆虫产生Bt抗性和对生物多样性的影响等.本文针对这些问题,对转基因植物潜在危害以及国际上现有的评价作简要综述.  相似文献   

11.
董媛媛 《生物多样性》2021,29(11):1530-36
由于生物安全内涵外延和基本要素的模糊性、评价指标及评价方法的多元性等因素的限制, 我国至今尚未形成全面有效的生物安全评价指标体系。为构建生物安全评价体系, 研判生物安全现状, 本文首先运用规范分析法剖析《生物安全法》中有关“生物安全”定义的特点及不足, 从国家安全角度认为生物安全是指国家有效防范和应对危险生物因子及相关因素的威胁, 维护和保障自身安全与利益的能力和状态。明晰了生物安全的外延, 即只有对国家安全利益、民众健康、生态环境保护产生威胁的生物风险, 才是生物安全所规制的对象。其次, 生物安全基本要素包括自然生物安全和社会经济生物安全。自然生物安全主要指民众健康和生态环境保护方面, 包括生物个体安全和生物多样性安全。社会经济生物安全的关注点在国家安全利益, 即社会稳定和国家经济利益, 包括生物技术安全、生物实验室安全。第三, 以生物安全基本要素为管理对象的尺度, 将国家安全利益、民众健康和生态环境保护作为评价主体, 以生物法治为理念, 运用模型构建法, 将定性指标和定量指标相结合, 基于驱动力‒压力‒状态‒接触‒影响‒行动模型(driving force-pressure-state-exposure-effect-action, DPSEEA)构建了一套具有生物法治特色的生物安全评价指标体系, 包括生物安全法律法规体系健全水平、生物安全所涉违法犯罪行为的打击力度、生物安全各部门机构协调机制的建立和完善程度、符合规定标准的生物实验室数量和百分比、生物安全人才数量及密度、对生物产业和基本卫生部门的官方援助及其他途径投资总额、疫苗覆盖的目标人群比例、生物安全的宣传教育普及率8项评价指标在内共32项生物安全评价指标。最后, 基于实地调研及数据统计分析, 以2019年和2020年深圳生物安全工作为例对评价体系进行验证。结果显示, 深圳生物安全工作在农业生物安全、动植物防疫、防范外来物种入侵方面成果显著; 但仍在法律法规体系、生物安全人才培养和资金投入、生物安全普及率方面存在不足。针对上述问题提出完善生物安全法律法规体系并注重法律协调衔接、“一个健康”实现多元协同生物治理、加强人才培养和资金投入、加强生物安全宣传教育等建议。  相似文献   

12.
A major role of ecological risk assessment (ERA) has been to provide scientific guidance on whether a future human activity will cause ecological harm, including such activities as release of a genetically modified organism (GMO), exotic species, or chemical pollutant into the environment. This requires the determination of the likelihoods that the activity:would cause a harm, and would not cause a harm. In the first case, the focus is on demonstrating the presence of a harm and developing appropriate management to mitigate such harm. This is usually evaluated using standard hypothesis analysis. In the second case, the focus is on demonstrating the absence of a harm and supporting a decision of biosafety. While most ERA researchers have focused on finding presence of harm, and some have wrongly associated the lack of detection of harm with biosafety, a novel approach in ERA would be to focus on demonstrating directly the safety of the activity. Although, some researchers have suggested that retrospective power analysis can be used to infer absence of harm, it actually provides inaccurate information about biosafety. A decision of biosafety can only be supported in a statistically sound manner by equivalence tests, described here. Using a 20% ecological equivalence standard in GMO examples, we illustrated the use of equivalence tests for two-samples with normal or binomial data and multi-sample normal data, and provided a spreadsheet calculator for each. In six of the eight examples, the effects of Cry toxins on a non-target organism were equivalent to a control, supporting a decision of biosafety. These examples also showed that demonstration of equivalence does not require large sample sizes. Although more relevant ecological equivalence standards should be developed to enable equivalence tests to become the main method to support biosafety decision making, we advocate their use for evaluating biosafety for non-target organisms because of their direct and accurate inference regarding safety.  相似文献   

13.
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: Perform plating procedures without contaminating media. Isolate single bacterial colonies by the streak-plating method. Use pour-plating and spread-plating methods to determine the concentration of bacteria. Perform soft agar overlays when working with phage. Transfer bacterial cells from one plate to another using the replica-plating procedure. Given an experimental task, select the appropriate plating method.  相似文献   

14.
A biological safety cabinet modified for bedding disposal was tested to determine the cabinet's ability to protect operators and experiments from aerosol exposure during routine microbiological and cage cleaning procedures. Stringent test conditions were provided by modifications of standardized protocols in addition to simulated cage dumping procedures, both of which utilized bacterial aerosols as challenges. Results of standardized test procedures (with no operator present) indicated good performance in protecting both operators and experiments. Procedures involving the dumping (by an operator) of contaminated bedding within the unit showed that the cabinet was able to contain 99.96% or greater of the total particles generated.  相似文献   

15.
目前国内外大多数针对非洲猪瘟病毒(African swine fever virus, ASFV)的研究须在生物安全三级实验室(biosafety level 3 laboratories, BSL-3 labs)中进行,因此针对该病毒的感染过程、中和抗体逃逸机制、药物研发等研究受到了一定限制。鉴于此,本研究选择ASFV包膜蛋白中与其进入细胞紧密相关的蛋白p12、CD2v、p30、p54和pE248R,构建表达这5种包膜蛋白的真核表达质粒,利用水疱性口炎病毒(vesicular stomatitis virus, VSV)假病毒包装体系,制备多种ASFV假病毒。以荧光素酶报告基因实验(luciferase assay)检测假病毒感染水平;选择1个包膜蛋白为代表,使用蛋白质印迹法(Western blot,WB)检测其在假病毒中的表达情况;采用芫花素检测其对所建立的ASFV假病毒(p30-pE248R-ASFV-PsV)的抑制活性。结果显示,VSV包装体系以及p30、pE248R包膜蛋白质粒的组合制备方法所包装出的假病毒具有较优的感染活性,适合用于建立细胞感染模型。ASFV的包膜蛋白pE248R被有效整合到VSV-ΔG rLuc颗粒中,并包装出ASFV假病毒。芫花素可浓度依赖性地抑制ASFV假病毒感染Vero细胞,其半数抑制浓度(half maximal inhibitory concentration, IC50)为4.05±0.88 μmol/L。本研究通过建立基于ASFV假病毒的细胞感染模型,筛选获得了1种可感染已报道的一些ASFV敏感细胞的假病毒。该假病毒无复制性,可在生物安全级别较低的实验室中进行操作,并且带有海肾荧光素酶报告基因,有望用于ASFV入侵抑制剂的高通量筛选及中和活性的初步评价,为研发抗ASFV药物提供了一个安全、方便的研究模型。  相似文献   

16.
Formaldehyde used for the disinfection of a laminar-flow biological safety cabinet was oxidatively degraded by using a catalyst. This technique reduced the formaldehyde concentration in the cabinet from about 5,000 to about 45 mg/m3 in 8 h. This technique should prove useful in other applications.  相似文献   

17.
生物安全实验室微环境消毒是控制实验室污染的重要环节。过氧化氢广泛用于病原微生物实验室微环境消毒,但其对不同病原微生物的消毒效果有待研究。本文研究了过氧化氢干雾(粒径%10μm)以不同消毒程序对生物安全柜表面常见微生物的消毒效果。结果显示,在生物安全柜内采用优化的消毒程序(发散循环8次,每次1min,达60ppm后,静置消毒2h),过氧化氢干雾可完全杀灭1×106CFU枯草芽胞杆菌、嗜热脂肪芽胞杆菌、金黄色葡萄球菌、表皮葡萄球菌、耻垢分枝杆菌,以及1×106CFU大肠埃希菌。然而,当金黄色葡萄球菌、表皮葡萄球菌、耻垢分枝杆菌浓度达1×107CFU时,过氧化氢干雾无法完全杀灭。因此,建议在进行过氧化氢干雾消毒时,应先用消毒剂处理,以期彻底杀灭生物安全柜微环境中污染的病原微生物。  相似文献   

18.
GFP is widely used as a molecular tool for the study of microbial pathogens. However, the manipulation of these pathogenic microorganisms poses a health threat to the laboratory worker, requiring biosafety level II or III containment. Although the GFPfluorophore is tolerant toformalin, a thorough analysis of this treatment on fluorescent output in prokaryotic systems has not been described. In addition, the analysis of microorganisms expressing GFP often depends on specialized equipment, which may not be housed in biosafety level II or III laboratories. Therefore, we sought to develop a safe and effective method for manipulating the GFP-expressing pathogenic bacterium Mycobacterium avium subsp, paratuberculosis (M. paratuberculosis) utilizing a formalin treatment that would permit the analysis of GFP fluorescence without requiring stringent biosafety containment. We demonstrate that formalin-treated M. paratuberculosis expresses 50% less fluorescence than viable cells, but this reduction is still compatible with spectrofluorometry and cell sorting. Furthermore, plasmid DNA that expresses GFP can be recovered efficiently from nonviable, sorted fluorescent cells. This approach is flexible, provides an additional margin of safety for laboratory personnel, and can be easily applied to other pathogenic microorganisms expressing GFP.  相似文献   

19.
The performance of class I and II microbiological safety cabinets over 7 years, employed in a force-ventilated containment level 3 (CL-3) laboratory, is described. Operator Protection (OP) provided by the cabinets, assessed by still and latterly limited 'in-use' KI-Discus tests, showed no overall deterioration during the review period. Comparisons show that a selected class II unit, but not a second, and a new class II MSC in a recently commissioned, similar CL-3 facility, provide the same order of OP as a class I cabinet. From the experiences described, it is strongly recommended that OP tests (OPTs) should be part of the routine servicing regime to ensure that cabinets meet required performance levels, and additionally to allow detection and rectification of poor containment, particularly where induced by environmental factors. The value of OPTs is discussed with reference to certain national standards.  相似文献   

20.
The considerable refinements necessary to enable Class I and II microbiological safety cabinets to operate in a force-ventilated laboratory and to meet appropriate safety criteria have been reported previously. The continued successful operation of such cabinets without a deterioration of operator protection is described. The performance of two Class II units, one meeting and one failing the current British Standard applied to four head KI-discus testing, is compared and discussed. In addition, some further potential difficulties within the environment, which could compromise cabinet containment, are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号