首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of tetrahydroisoquinolines has yielded potent MT(2) receptor antagonists, which are selective versus the MT(1) receptor.  相似文献   

2.
Liang W  Hoang Q  Clark RB  Fishman PH 《Biochemistry》2008,47(45):11750-11762
Agonist-mediated ubiquitination regulates some G protein-coupled receptors by targeting them to lysosomes for degradation. Phosphorylation also regulates receptor endocytosis and trafficking to lysosomes. To explore the roles of the two post-translational modifications, we mutated the three C-terminal lysines to arginines in the human beta 2-adrenergic receptor (beta 2AR) (K348/372/375R). The level of agonist-mediated ubiquitination of the mutant (3K/R) was greatly reduced compared to that of wild-type (WT) beta 2AR in whole cells and in cell-free assays. Downregulation of 3K/R also was attenuated compared to that of the WT, whereas internalization and recycling were more similar. During endocytosis, WT and 3K/R appeared in different vesicles and WT, but not 3K/R, was transported to lysosomes. Both were rapidly phosphorylated in agonist-stimulated cells, but upon agonist removal, the rate of dephosphorylation of 3K/R initially was approximately 5 times faster than that of WT. The increased rate also was observed in a cell-free, soluble assay and, thus, was not due to differences in receptor trafficking. Okadaic acid, a potent phosphatase inhibitor, reduced the level of dephosphorylation and increased the levels of lysosomal targeting and degradation of 3K/R. The reduced level of ubiquitination and rapid dephosphorylation of 3K/R appear to prevent it from being sorted to lysosomes in contrast to the phosphorylated and ubiquitinated WT beta 2AR. Our findings indicate that both phosphorylation and ubiquitination are involved in the intracellular sorting of beta 2AR between pathways of recycling to the plasma membrane and degradation in lysosomes, and that the rate of dephosphorylation may be another mechanism of regulating the sorting.  相似文献   

3.
Ferguson G  Watterson KR  Palmer TM 《Biochemistry》2002,41(50):14748-14761
In this study, we have characterized the differential effects on inhibitory adenosine receptor (AR) trafficking of disrupting predicted sites for palmitoylation and phosphorylation within each receptor's carboxyl terminus. While a Cys(302,305)Ala-mutated rat A(3)AR mutant internalizes significantly faster than the wild-type (WT) receptor in response to agonist exposure, analogous mutation of the human A(1)AR (Cys(309)Ala) had no effect on receptor internalization. Moreover, unlike the WT A(3)AR, the entire pool of internalized mutant A(3)AR is able to recycle back to the plasma membrane following agonist removal. These properties do not reflect utilization of an alternative trafficking pathway, as internalized WT and mutant A(3)ARs both accumulate into transferrin receptor-positive endosomal compartments. However, receptor accumulation into endosomes is dependent upon prior G-protein-coupled receptor kinase (GRK)-mediated phosphorylation of the receptor's carboxyl terminus, as replacement of the carboxyl-terminal domain of the human A(1)AR with the 14 GRK-phosphorylated amino acids of the rat A(3)AR confers rapid agonist-mediated endosomal accumulation of the resulting chimeric A(1)CT3AR. Sensitivity to GRK-mediated phosphorylation also dictates the distinct redistribution of arrestin3 observed upon agonist exposure. Thus, while the nonphosphorylated A(1)AR redistributes arrestin3 from the cytoplasm to punctate clusters at the plasma membrane, GRK-phosphorylated WT and Cys(302,305)Ala-mutated A(3)ARs, as well as the A(1)CT3AR chimera, each induce the redistribution of arrestin3 into punctate accumulations both at the plasma membrane and within the cytoplasm. Neither the human A(1)AR nor the rat A(3)AR colocalized with arrestin3 under basal or agonist-stimulated conditions. Together, these results demonstrate that inhibitory AR-mediated changes in arrestin3 distribution are subtype-specific, with specificity correlating with the sensitivity of the receptor's carboxyl-terminal domain to GRK phosphorylation. In the case of the rat A(3)AR, sensitivity to GRK-mediated internalization appears to be regulated in part by the integrity of putative palmitate attachment sites upstream of its GRK phosphoacceptor sites.  相似文献   

4.
A series of tetrahydroisoquinoline-N-phenylamide derivatives were designed, synthesized, and tested for their relative binding affinity and antagonistic activity against androgen receptor (AR). Compound 1b (relative binding affinity, RBA = 6.4) and 1h (RBA = 12.6) showed higher binding affinity than flutamide (RBA = 1), a potent AR antagonist. These two compounds also exerted optimal antagonistic activity against AR in reporter assays. The derivatives were also tested for their activities against another nuclear receptor, farnesoid x receptor (FXR), with most compounds acting as weak antagonists, however, compound 1h behaved as a FXR agonist with activity slightly less than that of chenodeoxycholic acid (CDCA), a natural FXR agonist.  相似文献   

5.
On the basis of potent and selective A(3) adenosine receptor (AR) antagonist, 2-chloro-N(6)-(3-iodobenzyl)-4'-thioadenosine-5'-N,N-dimethyluronamide, structure-activity relationships were studied for a series of 5'-N,N-dialkyluronamide derivatives, synthesized from D-gulonic gamma-lactone. From this study, it was revealed that removal of the hydrogen bond-donating ability of the 5'-uronamide was essential for the pure A(3)AR antagonism. 5'-N,N-Dimethyluronamide derivatives exhibited higher binding affinity than larger 5'-N,N-dialkyl or 5'-N,N-cycloalkylamide derivatives, indicating that steric factors are crucial in binding to the human A(3)AR. A N(6)-(3-bromobenzyl) derivative 6c (K(i)=9.32 nM) exhibited the highest binding affinity at the human A(3)AR with very low binding affinities to other AR subtypes.  相似文献   

6.
Agonist-induced phosphorylation of beta-adrenergic receptors (beta ARs) by G protein-coupled receptor kinases (GRKs) results in their desensitization followed by internalization. Whether protein kinase A (PKA)-mediated phosphorylation of beta ARs, particularly the beta 1AR subtype, can also trigger internalization is currently not known. To test this, we cloned the mouse wild type beta 1AR (WT beta 1AR) and created 3 mutants lacking, respectively: the putative PKA phosphorylation sites (PKA-beta 1AR), the putative GRK phosphorylation sites (GRK-beta 1AR), and both sets of phosphorylation sites (PKA-/GRK-beta 1AR). Following agonist stimulation, both PKA-beta 1AR and GRK-beta 1AR mutants showed comparable increases in phosphorylation and desensitization. Saturating concentrations of agonist induced only 50% internalization of either mutant compared with wild type, suggesting that both PKA and GRK phosphorylation of the receptor contributed to receptor sequestration in an additive manner. Moreover, in contrast to the WT beta 1AR and PKA-beta 1AR, sequestration of the GRK-beta 1AR and PKA-/GRK-beta 1AR was independent of beta-arrestin recruitment. Importantly, clathrin inhibitors abolished agonist-dependent internalization for both the WT beta 1AR and PKA-beta 1AR, whereas caveolae inhibitors prevented internalization only of the GRK-beta 1AR mutant. Taken together, these data demonstrate that: 1) PKA-mediated phosphorylation can trigger agonist-induced internalization of the beta 1AR and 2) the pathway selected for beta 1AR internalization is primarily determined by the kinase that phosphorylates the receptor, i.e. PKA-mediated phosphorylation directs internalization via a caveolae pathway, whereas GRK-mediated phosphorylation directs it through clathrin-coated pits.  相似文献   

7.
A(2A) adenosine receptor (A(2A)AR) has potent anti-inflammatory properties, which may be important in the regulation of airway reactivity and inflammation. Inflammatory cells that possess A(2A)AR also produce nitrosative stress, which is associated with pathophysiology of asthma, so we hypothesized that A(2A)AR deficiency may lead to increased airway reactivity and inflammation through nitrosative stress. Thus the present study was carried out to investigate the role of A(2A)AR on airway reactivity, inflammation, NF-kappaB signaling, and nitrosative stress in A(2A)AR knockout (KO) and wild-type (WT) mice using our murine model of asthma. Animals were sensitized intraperitoneally on days 1 and 6 with 200 microg of ragweed, followed by aerosolized challenges with 0.5% ragweed on days 11, 12, and 13, twice a day. On day 14, airway reactivity to methacholine was assessed as enhanced pause (Penh) using whole body plethysmography followed by bronchoalveolar lavage (BAL) and lung collection for various analyses. Allergen challenge caused a significant decrease in expression of A(2A)AR in A(2A) WT sensitized mice, with A(2A)AR expression being undetected in A(2A) KO sensitized group leading to decreased lung cAMP levels in both groups. A(2A)AR deletion/downregulation led to an increase in Penh to methacholine and influx of total cells, eosinophils, lymphocytes, and neutrophils in BAL with highest values in A(2A) KO sensitized group. A(2A) KO sensitized group further had increased NF-kappaB expression and nitrosative stress compared with WT sensitized group. These data suggest that A(2A)AR deficiency leads to airway inflammation and airway hyperresponsiveness, possibly via involvement of nitrosative stress in this model of asthma.  相似文献   

8.
Oxobenzimidazoles (e.g., 1), a novel series of androgen receptor (AR) antagonists, were discovered through de novo design guided by structure-based drug design. The compounds in this series were reasonably permeable and metabolically stable, but suffered from poor solubility. The incorporation of three dimensional structural features led to improved solubility. In addition, the observation of a 'flipped' binding mode of an oxobenzimidazole analog in an AR ligand binding domain (LBD) model, led to the design and discovery of the novel oxindole series (e.g., 2) that is a potent full antagonist of AR.  相似文献   

9.
A novel series of isoindoledione based compounds were identified as potent antagonists of the androgen receptor (AR). Co-crystallization of members of this family of inhibitors was successfully accomplished with the T877A AR LBD. A working model of how this class of compounds functions to antagonize the AR was created. Based on this model, it was proposed that expanding the bicyclic portion of the molecule should result in analogs which function as effective antagonists against a variety of AR isoforms. In contrast to what was predicted by the model, SAR around this new series was dictated by the aniline portion rather than the bicyclic portion of the molecule.  相似文献   

10.
Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.  相似文献   

11.
Most of the androgen actions are considered to be mediated by the androgen receptor (AR) of the target genes. The AR is composed of a fairly large molecule because of the long A/B domains of its N-terminal. However, the independent roles of the AR as well as those of the estrogen receptors largely remained unknown mainly due to the lack of the AR knockout (ARKO) mice line. We have succeeded in generating the ARKO mouse by means of a conditional targeting using the Cre/loxP system. The ARKO males grew healthily although they showed a typical feature of the testicular feminization mutation (Tfm) and the hormonal assay revealed significantly lower serum androgen and higher LH levels in comparison with those of the wild type (WT) males. The serum estrogen levels were, however, comparable between both the ARKO and the WT. Another hallmark of the ARKO males was a state of high bone turnover osteopenia, in which the acceleration in the bone resorption clearly exceeded the bone formation. Male-typical behaviors were disrupted in male ARKO mice. Aiming at a quick differentiation of an androgen-dependent polyQ disease such as Kennedy's disease, the authors also developed the Drosophila fly-eye model in which the wild type and the polyQ-expanded human AR (hAR) was induced in the eyes of Drosophila. When androgen was administered to the flies induced with the polyQ-expanded hAR, their optical nerves were devastated.  相似文献   

12.
A series of 7-substituted melatonin and 1-methylmelatonin analogues were prepared and tested against human and amphibian melatonin receptors. 7-Substituents reduced the agonist potency of all the analogues in the Xenopus laevis melanophore assay, 7-bromomelatonin (5d) and N-butanoyl 7-bromo-5-methoxytryptamine (5f) being the most active compounds, but both were 42-fold less potent than melatonin (1). Whereas all the analogues bind with lower affinity at the human MT(1) receptor than melatonin, 5d, 5f and N-propanoyl 7-bromo-5-methoxytryptamine (5e) show a similar binding affinity to melatonin at the MT(2) receptor and consequently show some MT(2) selectivity. These results suggest that the receptor pocket around C-7 favours binding by an electronegative group, suggesting an electropositive region in this area of the receptor.  相似文献   

13.
A series of 4-alkylamino-1-hydroxymethylimidazo[1,2-a]quinoxalines have been synthesized and evaluated for their adenosine A(1) receptor inhibitory activity in the radioligand binding assays. The compounds were tested for the inhibition percent (IP) and the affinity toward A(1)AR (K(i)) that IP were more than 90% in the nanomolar range. 4-Cyclopentylamino-7,8-dichloro-1-hydroxymethylimidazo[1,2-a]quinoxaline 18 is the most potent compound in this series, having K(i)=7nM, which is remarkably higher than that of IRFI-165 (K(i)=48). 1-Hydroxymethyl groups of the tricyclic heteroarmatic compounds displayed the potent affinities toward A(1)AR.  相似文献   

14.
In the following study, we asked which steroid receptors regulate aggression and arginine vasopressin (AVP) immunoreactivity (– ir) in several limbic regions. Using spontaneous mutant and knockout mice, we generated a novel cross of mice whose offspring lacked estrogen receptor α (ERα), androgen receptor (AR) or both ERα and AR. The wild-type (WT) males and females were compared with ERα knockout (ERαKO) male, mutated AR (Tfm) male and ERαKO/Tfm (double knockout; DKO) male littermates. Animals were gonadectomized and treated with 17β-estradiol (E2) prior to resident-intruder aggression tests. WT and Tfm males showed aggression whereas WT females, ERαKO and DKO males did not. In the lateral septum, WT and Tfm male brains had significantly denser AVP-ir as compared with WT females and DKO males. ERαKO male brains were intermediate in the amount of AVP-ir present. In the medial amygdala, brains from all genotypes had equivalent AVP-ir, except DKO males, which had significantly less AVP-ir. Overall, the expression of aggressive behavior coincided with AVP-ir in WT, Tfm and DKO males. However, in ERαKO males and WT females, the amount of AVP-ir was not associated with resident-intruder aggression. In sum we have shown that E2 acts via ERα to regulate aggression in male mice. In contrast both ERα and AR contribute to AVP-ir in limbic brain regions.  相似文献   

15.
A novel oxachrysenone series (2) of nonsteroidal selective androgen receptor modulators (SARM) was developed based on the 6-aryl-2-quinolinones (1). Synthesis and preliminary SAR results based on in vitro assays are discussed. In the cotransfection assay, lead compound 5d showed AR agonist activity more potent than dihydrotestosterone (DHT), whereas compound 17b was a potent antagonist similar to bicalutamide.  相似文献   

16.
The role of the adenosine A3 receptor in hematopoiesis was studied using adenosine A3 receptor knockout (A3AR KO) mice. Hematological parameters of peripheral blood and femoral bone marrow of irradiated and untreated A3AR KO mice and their wild-type (WT) counterparts were investigated. Irradiation of the mice served as a defined hematopoiesis-damaging means enabling us to evaluate contingent differences in the pattern of experimentally induced hematopoietic suppression between the A3AR KO mice and WT mice. Defects were observed in the counts and/or functional parameters of blood cells in the A3AR KO mice. These defects include statistically significantly lower values of blood neutrophil and monocyte counts, as well as those of mean erythrocyte volume, mean erythrocyte hemoglobin, blood platelet counts, mean platelet volume, and plateletcrit, and can be considered to bear evidence of the lack of a positive role played by the adenosine A3 receptor in the hematopoietic system. Statistically significantly increased values of the bone marrow parameters studied in A3AR KO mice (femoral bone marrow cellularity, granulocyte/macrophage progenitor cells, and erythrocyte progenitor cells) can probably be explained by compensatory mechanisms attempting to offset the disorders in the function of blood elements in these mice. The pattern of the radiation-induced hematopoietic suppression was very similar in A3AR KO mice and their WT counterparts.  相似文献   

17.
We investigated whether A(3) adenosine receptor (A(3)AR) is involved in endothelium-mediated contraction through cyclooxygenases (COXs) with the use of wild-type (WT) and A(3) knockout (A(3)KO) mice aorta. A(3)AR-selective agonist, Cl-IBMECA, produced a concentration-dependent contraction (EC(50): 2.9 +/- 0.2 x 10(-9) M) in WT mouse aorta with intact endothelium (+E) and negligible effects in A(3)KO +E aorta. At 10(-7) M, contractions produced by Cl-IBMECA were 29% in WT +E, while being insignificant in A(3)KO +E aorta. Cl-IBMECA-induced responses were abolished in endothelium-denuded tissues (-E), in both WT and A(3)KO aorta. A(3)AR gene and protein expression were reduced by 74 and 72% (P < 0.05), respectively, in WT -E compared with WT +E aorta, while being undetected in A(3)KO +E/-E aorta. Indomethacin (nonspecific COXs blocker, 10(-5) M), SC-560 (specific COX-1 blocker, 10(-8) M), SQ 29549 (thromboxane prostanoid receptor antagonist, 10(-6) M), and furegrelate (thromboxane synthase inhibitor, 10(-5) M) inhibited Cl-IBMECA-induced contraction significantly. Cl-IBMECA-induced thromboxane B(2) production was also attenuated significantly by indomethacin, SC-560, and furegrelate in WT +E aorta, while having negligible effects in A(3)KO +E aorta. NS-398 (specific COX-2 blocker) produced negligible inhibition of Cl-IBMECA-induced contraction in both WT +E and A(3)KO +E aorta. Cl-IBMECA-induced increase in COX-1 and thromboxane prostanoid receptor expression were significantly inhibited by MRS1523, a specific A(3)AR antagonist in WT +E aorta. Expression of both A(3)AR and COX-1 was located mostly on endothelium of WT and A(3)KO +E aorta. These results demonstrate for the first time the involvement of COX-1 pathway in A(3)AR-mediated contraction via endothelium.  相似文献   

18.
19.
Studies of the physiological actions of melatonin have been hindered by the lack of specific, potent and subtype selective agonists and antagonists. In the present study, we describe the utility of a melanophore cell line from Xenopus laevis for exploring structure-activity relationships among novel melatonin analogues and report a novel MT2-selective agonist (IIK7) and MT2-selective receptor antagonist (K185). IIK7 is a potent melatonin receptor agonist in the melanophore model, and in NIH3T3 cells expressing human mt1 and MT2 receptor subtypes. In radioligand binding experiments IIK7 is 90-fold selective for the MT2 subtype. K185 is devoid of agonist activity, but acts as a competitive melatonin antagonist in melanophores. A low concentration (10(-9) M) antagonizes melatonin inhibition of forskolin stimulation of cyclic AMP in NIH3T3 cells expressing human MT2 receptors, but has no effect in cells expressing mt1 receptors. In binding assays, K185 is 140-fold selective for the MT2 subtype.  相似文献   

20.
Gap junctions are intercellular channels that connect the cytoplasm of adjacent cells, allowing the passage of small molecules (<1 kDa) and thereby the regulation of many different processes. In the male gonad, the most abundant protein that builds gap junctions is connexin 43 (Cx43, GJA1). Specific knock-out of Sertoli cells (SCCx43KO?/?) results in an impaired spermatogenesis up to the Sertoli cell only syndrome. The aim of this study was to compare the testicular expression pattern of the androgen receptor (AR) in wild type (WT) and SCCx43KO?/? mice. In both WT and SCCx43KO?/? testes, the AR staining was restricted to the nuclei of Sertoli, Leydig, and peritubular cells. However, the staining intensity varied between control and mutant mice. In the latter, the AR expression depended on the level of the seminiferous tubule impairment. In tubules with qualitatively normal spermatogenesis, the AR protein expression was similar to that observed in the testes of WT mice. Conversely, seminiferous tubules with an arrest of spermatogenesis at the level of spermatogonial or spermatocyte phase expressed the AR at a lower intensity. In Sertoli cell only tubules (no germ cells in the tubules), the AR immunoreaction was mainly weak or undetectable. Moreover, AR staining was lower in Sertoli and Leydig cells (p < 0.001 and p < 0.05, respectively) of SCCx43KO?/? mice compared to WT mice, as revealed by a semiquantitative analysis. In conclusion, the deletion of Cx43 leads to a partial disruption of the AR signaling pathway, indicating a possible reason for the observed impaired spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号