首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The chloroplast infA gene with a functional UUG initiation codon   总被引:2,自引:0,他引:2  
All chloroplast genes reported so far possess ATG start codons and sometimes GTGs as an exception. Sequence alignments suggested that the chloroplast infA gene encoding initiation factor 1 in the green alga Chlorella vulgaris has TTG as a putative initiation codon. This gene was shown to be transcribed by RT-PCR analysis. The infA mRNA was translated accurately from the UUG codon in a tobacco chloroplast in vitro translation system. Mutation of the UUG codon to AUG increased translation efficiency approximately 300-fold. These results indicate that the UUG is functional for accurate translation initiation of Chlorella infA mRNA but it is an inefficient initiation codon.  相似文献   

3.
Previous studies have shown that translation of mrna for yeast glycyl-tRNA synthetase is alternatively initiated from UUG and a downstream AUG initiation codon. Evidence presented here shows that unlike an AUG initiation codon, efficiency of this non-AUG initiation codon is significantly affected by its sequence context, in particular the nucleotides at positions -3 to -1 relative to the initiation codon. A/A/R (R represents A Or G) and C/G/C appear to be the most and least favorable sequences at these positions, respectively. Mutation of the native context sequence -3 to -1 from AAA to CGC reduced translation initiation from the UUG codon up to 32-fold and resulted in loss of mitochondrial respiration. although an AUG initiation codon is, in general, unresponsive to context changes in yeast, an AAA (-3 to -1) to CGC mutation still reduced its initiating activity up to 8-fold under similar conditions. these results suggest that sequence context is more important for translation initiation in yeast than previously appreciated.  相似文献   

4.
In a genetic selection designed to isolate Escherichia coli mutations that increase expression of the IS 10 transposase gene ( tnp ), we unexpectedly obtained viable mutants defective in translation initiation factor 3 (IF3). Several lines of evidence led us to conclude that transposase expression, per se , was not increased. Rather, these mutations appear to increase expression of the tnp'–'lacZ gene fusions used in this screen, by increasing translation initiation at downstream, atypical initiation codons. To test this hypothesis we undertook a systematic analysis of start codon requirements and measured the effects of IF3 mutations on initiation from various start codons. Beginning with an efficient translation initiation site, we varied the AUG start codon to all possible codons that differed from AUG by one nucleotide. These potential start codons fall into distinct classes with regard to translation efficiency in vivo : Class I codons (AUG, GUG, and UUG) support efficient translation; Class IIA codons (CUG, AUU, AUC, AUA, and ACG) support translation at levels only 1–3% that of AUG; and Class IIB codons (AGG and AAG) permit levels of translation too low for reliable quantification. Importantly, the IF3 mutations had no effect on translation from Class I codons, but they increased translation from Class II codons 3–5-fold, and this same effect was seen in other gene contexts. Therefore, IF3 is generally able to discriminate between efficient and inefficient codons in vivo , consistent with earlier in vitro observations. We discuss these observations as they relate to IF3 autoregulation and the mechanism of IF3 function.  相似文献   

5.
We described previously a simian virus 40 (SV40) mutant, pSVAdL, that was defective in synthesis of the late viral protein VP1. This mutant, which contains a 100-base-pair fragment of adenovirus DNA encompassing the major late promoter inserted in the SV40 late promoter region (SV40 nucleotide 294), efficiently synthesizes agnoprotein, a protein encoded by the leader region of the same mRNA that encodes VP1. When the agnoprotein AUG initiation codon in pSVAdL was mutated to UUG, agnoprotein synthesis was abolished, and VP1 synthesis was elevated to wild-type levels. Because levels of late mRNA synthesis were not affected by this mutation, these results support a scanning model of translation initiation and suggest that internal translational reinitiation does not occur efficiently in this situation.  相似文献   

6.
The quantitative levels of initiation of protein synthesis at codons other than AUG were determined with a CYC7-lacZ fused gene in the yeast Saccharomyces cerevisiae. AUG was the only codon which efficiently initiated translation, although some non-AUG codons allowed initiation at very low efficiency, below 1% of the normal level. Since translation initiates at codons other than AUG in at least two wild-type genes from eucaryotes, other factors presumably play a role in enhancing the activity of non-AUG codons.  相似文献   

7.
Stenström CM  Holmgren E  Isaksson LA 《Gene》2001,273(2):259-265
The purine-rich Shine-Dalgarno (SD) sequence located a few bases upstream of the mRNA initiation codon supports translation initiation by complementary binding to the anti-SD in the 16S rRNA, close to its 3' end. AUG is the canonical initiation codon but the weaker UUG and GUG codons are also used for a minority of genes. The codon sequence of the downstream region (DR), including the +2 codon immediately following the initiation codon, is also important for initiation efficiency. We have studied the interplay between these three initiation determinants on gene expression in growing Escherichia coli. One optimal SD sequence (SD(+)) and one lacking any apparent complementarity to the anti-SD in 16S rRNA (SD(-)) were analyzed. The SD(+) and DR sequences affected initiation in a synergistic manner and large differences in the effects were found. The gene expression level associated with the most efficient of these DRs together with SD(-) was comparable to that of other DRs together with SD(+). The otherwise weak initiation codon UUG, but not GUG, was comparable with AUG in strength, if placed in the context of two of the DRs. The +2 codon was one, but not the only, determinant for this unexpectedly high efficiency of UUG.  相似文献   

8.
The phosphoprotein of rabies virus is a 297-amino-acid polypeptide encoded by the longest open reading frame of the P gene. Immunoprecipitation experiments using a monoclonal antiserum directed against the P protein detected the P protein and at least four additional shorter products in infected cells, cells transfected with a plasmid encoding the wild-type P protein, and purified virus (CVS strain). By means of deletion analyses, these proteins were shown to be translated from secondary downstream in-frame AUG initiation codons. Immunofluorescence experiments indicated that all these P products were found in the cytoplasm of transfected cells; however, the proteins initiated from the third, fourth, and fifth AUG codons were found mostly in the nucleus. Changes in the 5'-terminal region of the P mRNA (including site-specific mutations, deletions, and insertions) demonstrated that a leaky scanning mechanism is responsible for translation initiation of the P gene at several sites.  相似文献   

9.
The eukaryotic 43S pre-initiation complex (PIC) containing Met-tRNAiMet in a ternary complex (TC) with eIF2-GTP scans the mRNA leader for an AUG codon in favorable “Kozak” context. AUG recognition triggers rearrangement of the PIC from an open conformation to a closed state with more tightly bound Met-tRNAiMet. Yeast ribosomal protein uS5/Rps2 is located at the mRNA entry channel of the 40S subunit in the vicinity of mRNA nucleotides downstream from the AUG codon or rRNA residues that communicate with the decoding center, but its participation in start codon recognition was unknown. We found that nonlethal substitutions of conserved Rps2 residues in the entry channel reduce bulk translation initiation and increase discrimination against poor initiation codons. A subset of these substitutions suppress initiation at near-cognate UUG start codons in a yeast mutant with elevated UUG initiation, and also increase discrimination against AUG codons in suboptimal Kozak context, thus resembling previously described substitutions in uS3/Rps3 at the 40S entry channel or initiation factors eIF1 and eIF1A. In contrast, other Rps2 substitutions selectively discriminate against either near-cognate UUG codons, or poor Kozak context of an AUG or UUG start codon. These findings suggest that different Rps2 residues are involved in distinct mechanisms involved in discriminating against different features of poor initiation sites in vivo.  相似文献   

10.
During eukaryotic translation initiation, the 43 S ribosomal pre-initiation complex scans the mRNA in search of an AUG codon at which to begin translation. Start codon recognition halts scanning and triggers a number of events that commit the complex to beginning translation at that point on the mRNA. Previous studies in vitro and in vivo have indicated that eukaryotic initiation factors (eIFs) 1, 2 and 5 play key roles in these events. In addition, it was reported recently that the C-terminal domain of eIF1A is involved in maintaining the fidelity of start codon recognition. The molecular mechanisms by which these factors work together to ensure fidelity of start site selection remain poorly understood. Here, we report the quantitative characterization of energetic interactions between eIF1A, eIF5 and the AUG codon in an in vitro reconstituted yeast translation initiation system. Our results show that recognition of an AUG codon by the 43 S complex triggers an interaction between eIF5 and eIF1A, resulting in a shift in the equilibrium between two states of the pre-initiation complex. This AUG-dependent change may be a reorganization from a scanning-competent state to a scanning-incompetent state. Mutations in both eIF1A and eIF5 that increase initiation at non-AUG codons in vivo weaken the interaction between the two factors upon AUG recognition, while specifically strengthening it in response to a UUG codon. These data suggest strongly that the interaction between eIF1A and eIF5 is involved in maintaining the fidelity of start codon recognition in vivo.  相似文献   

11.
The role which post-translational modification plays in the genesis of herpes simplex virus-induced polypeptides was investigated. Two-dimensional gel electrophoresis was used to identify those polypeptides (i) synthesized in vitro, (ii) labeled in vivo during a pulse, and (iii) labeled after a chase. Excluding glycoproteins, we detected 36 precursor or short-lived polypeptides, 8 polypeptides which were generated by post-translational modification, 46 polypeptides which were apparently not modified after synthesis, and 19 polypeptides which were either transient intermediates or not modified. Comparison of polypeptides synthesized in vitro and during an in vivo pulse showed that translation in vitro resembles quite closely translation in vivo and that amounts of protein synthesized in vivo are determined largely by the levels of mRNA. This analysis provided the basis for an investigation of the suggestion (C.M. Preston and D.J. McGeoch, J. Virol. 38:593-605, 1981) that the two polypeptides of apparent molecular weights of 43,000 (VI 43) and 39,000 (VI 39) encoded by the herpes simplex virus type 1 thymidine kinase gene are translated from a single mRNA by two in-phase initiation codons. Hybrid arrest was used to identify in vitro translation products encoded by the thymidine kinase gene. Two-dimensional gel electrophoresis showed that VI 39 was more acidic than VI 43, consistent with the predicted amino acid composition of a polypeptide whose synthesis was initiated at the second AUG codon, located 135 bases downstream from the first. Furthermore, two-dimensional gels revealed a third polypeptide whose synthesis was arrested by the same fragment. Its pI and apparent molecular weight (38,000) were compatible with initiation of translation at a third AUG codon an additional 42 bases downstream. Our findings provide strong evidence that downstream initiation codons within the thymidine kinase mRNA are used.  相似文献   

12.
Mutational analysis of upstream AUG codons of poliovirus RNA.   总被引:31,自引:19,他引:12       下载免费PDF全文
The 5' untranslated region of poliovirus type 2 Lansing RNA consists of 744 nucleotides containing seven AUG codons which are followed by in-frame termination codons, thus forming short open reading frames (ORFs). To determine the biological significance of these small ORFs, all of the upstream AUG codons were mutated to UUG. The point mutations were introduced into an infectious poliovirus cDNA clone, and RNA transcribed in vitro from the altered cDNA was transfected into HeLa cells to recover the virus. Mutation of AUG 7 resulted in a virus (called R2-5NC-14) with a small-plaque phenotype, whereas mutation of the other six AUG codons produced virus with a wild-type plaque morphology. To determine whether the small-plaque phenotype of R2-5NC-14 was due to altered translational efficiency of the viral mRNA, we constructed chimeric mRNAs containing the 5' noncoding region of poliovirus mRNA fused to the chloramphenicol acetyltransferase (CAT) coding sequence. mRNA containing a mutated AUG 7 codon showed decreased translational efficiency in vitro. The results indicate that the upstream ORFs of poliovirus RNA are not essential for viral replication and do not act as barriers to the translation of poliovirus mRNA. AUG 7 and flanking sequences may play a positive acting role in poliovirus RNA translation.  相似文献   

13.
14.
扫描模型和遗漏扫描模型是真核生物mRNA翻译起始的两种主要机制,但其仍存在某些例外情况,如对具有多顺反子结构的mRNA,选择性翻译起始的发生机制目前仍不清楚.本研究基于GFP蛋白开放表达框(ORF)构建了一系列重组表达载体,用以转录在移码翻译顺序及同一翻译顺序下,AUG起始密码子处于不同序列背景,以及间隔不同距离的多顺反子结构mRNA.通过转染人Bel 7402细胞系,研究了这些多顺反子结构mRNA的翻译起始模式.结果表明,在移码翻译顺序下,多顺反子mRNA可翻译出对应的不同蛋白质,而在同一翻译顺序下,GFP蛋白表达框中的多个AUG密码子,仅有首位起始密码子可发挥作用,提示核糖体在从首位起始密码子开始翻译的同时,可能会有部分核糖体继续向下扫描并识别下游的起始密码子,而这种选择性的翻译起始效率,主要取决于密码子所处的序列背景及间隔距离等因素.  相似文献   

15.
The use of several translation initiation codons in a single mRNA, by expressing several proteins from a single gene, contributes to the generation of protein diversity. A small, yet growing, number of mammalian mRNAs initiate translation from a non-AUG codon, in addition to initiating at a downstream in-frame AUG codon. Translation initiation on such mRNAs results in the synthesis of proteins harbouring different amino terminal domains potentially conferring on these isoforms distinct functions. Use of non-AUG codons appears to be governed by several features, including the sequence context and the secondary structure surrounding the codon. Selection of the downstream initiation codon can occur by leaky scanning of the 43S ribosomal subunit, internal entry of ribosome or ribosomal shunting. The biological significance of non-AUG alternative initiation is demonstrated by the different subcellular localisations and/or distinct biological functions of the isoforms translated from the single mRNA as illustrated by the two main angiogenic factor genes encoding the fibroblast growth factor 2 (FGF2) and the vascular endothelial growth factor (VEGF). Consequently, the regulation of alternative initiation of translation might have a crucial role for the biological function of the gene product.  相似文献   

16.
Translational regulation of the JunD messenger RNA   总被引:2,自引:0,他引:2  
  相似文献   

17.
The signals that control initiation of translation in plants are not well understood. To dissect some of these signals, we used a plant viral mRNA on which protein synthesis initiates at two out-of-frame start codons. On the large subgenomic RNA (sgRNA1) of barley yellow dwarf virus-PAV serotype, the coat protein (CP) and overlapping 17K open reading frames (ORFs) are translated beginning at the first and second AUG codons, respectively. The roles of bases at positions -3 and +4 relative to the AUG codons in efficiency of translation initiation were investigated by translation of sgRNA1 mutants in a cell-free extract and by expression of a reporter gene from mutant sgRNA1 leaders in protoplasts. The effects of mutations that disrupted and restored secondary structure encompassing the CP AUG independently of, and in combination with, changes to bases -3 and +4 were also examined. Partial digestion of the 5' end of the sgRNA1 leader with structure-sensitive nucleases gave products that were consistent with the predicted secondary structure. Secondary structure had an overall inhibitory effect on translation of both ORFs. In general, the "Kozak rules" of start codon preference predominate in determining start codon choice. Unexpectedly, for a given CP AUG sequence context, changes that decreased initiation at the downstream 17K AUG also reduced initiation at the CP AUG. To explain this observation, we propose a new model in which pausing of the ribosome at the second AUG allows increased initiation at the first AUG. This detailed analysis of the roles of primary and secondary structure in controlling translation initiation should be of value for understanding expression of any plant gene and in the design of artificial constructs.  相似文献   

18.
X Chen  K L Kindle    D B Stern 《The Plant cell》1995,7(8):1295-1305
To study translation initiation in Chlamydomonas chloroplasts, we mutated the initiation codon AUG to AUU, ACG, ACC, ACU, and UUC in the chloroplast petA gene, which encodes cytochrome f of the cytochrome b6/f complex. Cytochrome f accumulated to detectable levels in all mutant strains except the one with a UUC codon, but only the mutant with an AUU codon grew well at 24 degrees C under conditions that require photosynthesis. Because no cytochrome f was detectable in the UUC mutant and because each mutant that accumulated cytochrome f did so at a different level, we concluded that any residual translation probably initiates at the mutant codon. As a further demonstration that alternative initiation sites are not used in vivo, we introduced in-frame UAA stop codons immediately downstream or upstream or in place of the initiation codon. Stop codons at or downstream of the initiation codon prevented accumulation of cytochrome f, whereas the one immediately upstream of the initiation codon had no effect on the accumulation of cytochrome f. These results suggest that an AUG codon is not required to specify the site of translation initiation in chloroplasts but that the efficiency of translation initiation depends on the identity of the initiation codon.  相似文献   

19.
Translation initiation in eukaryotes involves more than a dozen protein factors. Alterations in six factors have been found to reduce the fidelity of start codon recognition by the ribosomal preinitiation complex in yeast, a phenotype referred to as Sui(-). No small molecules are known that affect the fidelity of start codon recognition. Such compounds would be useful tools for probing the molecular mechanics of translation initiation and its regulation. To find compounds with this effect, we set up a high-throughput screen using a dual luciferase assay in S. cerevisiae. Screening of over 55,000 compounds revealed two structurally related molecules that decrease the fidelity of start codon selection by approximately twofold in the dual luciferase assay. This effect was confirmed using additional in vivo assays that monitor translation from non-AUG start codons. Both compounds increase translation of a natural upstream open reading frame previously shown to initiate translation at a UUG. The compounds were also found to exacerbate increased use of UUG as a start codon (Sui(-) phenotype) conferred by haploinsufficiency of wild-type eukaryotic initiation factor (eIF) 1, or by mutation in eIF1. Furthermore, the effects of the compounds are suppressed by overexpressing eIF1, which is known to restore the fidelity of start codon selection in strains harboring Sui(-) mutations in various other initiation factors. Together, these data strongly suggest that the compounds affect the translational machinery itself to reduce the accuracy of selecting AUG as the start codon.  相似文献   

20.
Effect of structure of the initiator codon on translation in E. coli   总被引:2,自引:0,他引:2  
A set of plasmids carrying different initiator codons--either AUG, or GUG, or UUG, or CUG (as a control) in the hybrid gene lacIZ--was constructed by using synthetic oligonucleotides. GUG and UUG codons were demonstrated to be 2-3 times less effective than AUG in translation initiation. Furthermore, the correlation between the efficiencies of different initiator codons in translation initiation proved to vary, depending on the phase of bacterial growth. The rarely occurring usage in nature of the initiator codons GUG and UUG is supposed to be due to the particular role played by the initiator triplets in regulation of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号