首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The 2.3-kb mRNA that codes for cytochrome P-450c27 (CYP27) has an unexpectedly long 5'-untranslated region (UTR) that holds six AUGs, leading to several upstream open reading frames (uORFs). The initiation of translation from the seventh AUG forms a putative 55-kDa precursor, which is processed in mitochondria to form a 52-kDa mature protein. The first three AUGs form fully overlapping uORF1, uORF2, and uORF3 that are in-frame with the seventh AUG and next two form fully overlapping uORF4 and uORF5 that are out-of-frame with the seventh AUG. Although not recognized by the scanning ribosomes under normal conditions, the sixth in-frame AUG forms a putative 57-kDa extension of the main open reading frame. The purpose of this study was to identify the elements in the 5'-UTR that direct CYP27 mRNA translation exclusively from the seventh AUG. Expression of 5' deletion mutants in COS cells reveal that the intact 5'-UTR not only directs the initiation of translation from the seventh AUG but also acts as a negative regulator. A 2-kb deletion mutant that lacks uORF1 initiates translation equally from the sixth and the seventh AUGs, forming both 57- and 55-kDa precursor proteins with a 2-fold increase in rate of translation. However, induction in translation does not affect the levels of the mature 52-kDa form in mitochondria but causes accumulation of the precursor form in cytosol not seen in COS cells transfected with wild-type cDNA. Mutation of the stop codon that terminates uORF1 completely shifts the initiation of translation from the seventh to the first AUG, forming a 67-kDa precursor that is processed into a 52-kDa mature protein in mitochondria. Confirmation of the bicistronic nature of CYP27 mRNA by epitope mapping of uORF1 suggests that translation of CYP27 mRNA from the seventh AUG is directed and regulated by uORF1 expression.  相似文献   

4.
5.
In a genetic selection designed to isolate Escherichia coli mutations that increase expression of the IS 10 transposase gene ( tnp ), we unexpectedly obtained viable mutants defective in translation initiation factor 3 (IF3). Several lines of evidence led us to conclude that transposase expression, per se , was not increased. Rather, these mutations appear to increase expression of the tnp'–'lacZ gene fusions used in this screen, by increasing translation initiation at downstream, atypical initiation codons. To test this hypothesis we undertook a systematic analysis of start codon requirements and measured the effects of IF3 mutations on initiation from various start codons. Beginning with an efficient translation initiation site, we varied the AUG start codon to all possible codons that differed from AUG by one nucleotide. These potential start codons fall into distinct classes with regard to translation efficiency in vivo : Class I codons (AUG, GUG, and UUG) support efficient translation; Class IIA codons (CUG, AUU, AUC, AUA, and ACG) support translation at levels only 1–3% that of AUG; and Class IIB codons (AGG and AAG) permit levels of translation too low for reliable quantification. Importantly, the IF3 mutations had no effect on translation from Class I codons, but they increased translation from Class II codons 3–5-fold, and this same effect was seen in other gene contexts. Therefore, IF3 is generally able to discriminate between efficient and inefficient codons in vivo , consistent with earlier in vitro observations. We discuss these observations as they relate to IF3 autoregulation and the mechanism of IF3 function.  相似文献   

6.
Mammalian cytosolic and mitochondrial thioredoxin reductases are essential selenocysteine-containing enzymes that control thioredoxin functions. Thioredoxin/glutathione reductase (TGR) is a third member of this enzyme family. It has an additional glutaredoxin domain and shows highest expression in testes. Herein, we found that human and several other mammalian TGR genes lack any AUG codons that could function in translation initiation. Although mouse and rat TGRs have such codons, we detected protein sequences upstream of them by immunoblot assays and direct proteomic analyses. Further gene engineering and expression analyses demonstrated that a CUG codon, located upstream of the sequences previously thought to initiate translation, is the actual start codon in mouse TGR. The use of this codon relies on the Kozak consensus sequence and ribosome-scanning mechanism. However, CUG serves as an inefficient start codon that allows downstream initiation, thus generating two isoforms of the enzyme in vivo and in vitro. The use of CUG evolved in mammalian TGRs, and in some of these organisms, GUG is used instead. The newly discovered longer TGR form shows cytosolic localization in cultured cells and is expressed in spermatids in mouse testes. This study shows that CUG codon is used as an inefficient start codon to generate protein isoforms in mouse.  相似文献   

7.
We recently demonstrated that the very long 5'-untranslated region (5'-UTR) of the vascular endothelial growth factor (VEGF) mRNA contains two independent internal ribosome entry sites (IRES A and B). In the human sequence, four potential CUG translation initiation codons are located in between these IRES and are in frame with the classical AUG start codon. By in vitro translation and COS-7 cell transfections, we demonstrate that a high mol wt VEGF isoform [called large VEGF (L-VEGF)] is generated by an alternative translation initiation process, which occurs at the first of these CUG codons. Using a bicistronic strategy, we show that the upstream IRES B controls the translation initiation of L-VEGF. This isoform is 206 amino acids longer than the classical AUG-initiated form. With a specific antibody raised against this NH2 extension, we show that the L-VEGF is present in different mouse tissues or in transfected COS-7 cells. We also demonstrate that L-VEGF is cleaved into two fragments: a 23-kDa NH2-specific fragment and a fragment with an apparent size similar to that of the classical AUG-initiated form. This cleavage requires the integrity of a hydrophobic sequence located in the central part of the L-VEGF molecule. This sequence actually plays the role of signal peptide in the classical AUG-initiated form. The AUG-initiated form and the COOH cleavage product of the L-VEGF are both secreted. In contrast, the large isoform and its NH2 fragment present an intracellular localization. These data unravel a further level of complexity in the regulation of VEGF expression.  相似文献   

8.
The sodium-dependent neutral amino acid transporter type 2 (ASCT2) was recently identified as a cell surface receptor for endogenously inherited retroviruses of cats, baboons, and humans as well as for horizontally transmitted type-D simian retroviruses. By functional cloning, we obtained 10 full-length 2.9-kilobase pair (kbp) cDNAs and two smaller identical 2.1-kbp cDNAs that conferred susceptibility to these viruses. Compared with the 2.9-kbp cDNA, the 2.1-kbp cDNA contains exonic deletions in its 3' noncoding region and a 627-bp 5' truncation that eliminates sequences encoding the amino-terminal portion of the full-length ASCT2 protein. Although expression of the truncated mRNA caused enhanced amino acid transport and viral receptor activities, the AUG codon nearest to its 5' end is flanked by nucleotides that are incompatible with translational initiation and the next in-frame AUG codon is far downstream toward the end of the protein coding sequence. Interestingly, the 5' region of the truncated ASCT2 mRNA contains a closely linked series of CUG(Leu) and GUG(Val) codons in optimal consensus contexts for translational initiation. By deletion and site-directed mutagenesis, cell-free translation, and analyses of epitope-tagged ASCT2 proteins synthesized intracellularly, we determined that the truncated mRNA encodes multiple ASCT2 isoforms with distinct amino termini that are translationally initiated by a leaky scanning mechanism at these CUG and GUG codons. Although the full-length ASCT2 mRNA contains a 5'-situated AUG initiation codon, a significant degree of leaky scanning also occurred in its translation. ASCT2 isoforms with relatively short truncations were active in both amino acid transport and viral reception, whereas an isoform with a 79-amino acid truncation that lacked the first transmembrane sequence was active only in viral reception. We conclude that ASCT2 isoforms with truncated amino termini are synthesized in mammalian cells by a leaky scanning mechanism that employs multiple alternative CUG and GUG initiation codons.  相似文献   

9.
Specific interaction between the start codon, 5’-AUG-3’, and the anticodon, 5’-CAU-3’, ensures accurate initiation of translation. Recent studies show that several near-cognate start codons (e.g. GUG and CUG) can play a role in initiating translation in eukaryotes. However, the mechanism allowing initiation through mismatched base-pairs at the ribosomal decoding site is still unclear at an atomic level. In this work, we propose an extended simulation-based method to evaluate free energy profiles, through computing the distance between each base-pair of the triplet interactions involved in recognition of start codons in eukaryotic translation pre-initiation complex. Our method provides not only the free energy penalty for mismatched start codons relative to the AUG start codon, but also the preferred pathways of transitions between bound and unbound states, which has not been described by previous studies. To verify the method, the binding dynamics of cognate (AUG) and near-cognate start codons (CUG and GUG) were simulated. Evaluated free energy profiles agree with experimentally observed changes in initiation frequencies from respective codons. This work proposes for the first time how a G:U mismatch at the first position of codon (GUG)-anticodon base-pairs destabilizes the accommodation in the initiating eukaryotic ribosome and how initiation at a CUG codon is nearly as strong as, or sometimes stronger than, that at a GUG codon. Our method is expected to be applied to study the affinity changes for various mismatched base-pairs.  相似文献   

10.
11.
12.
Translation initiation of alphavirus subgenomic mRNA (sgmRNA) can occur in the absence of several initiation factors (eIFs) in infected cells; however, the precise translation mechanism is still poorly understood. In this study, we have examined the mechanism of initiation and AUG selection in Sindbis virus (SINV) sgmRNA. Our present findings suggest that sgmRNA is translated via a scanning mechanism, since the presence of a hairpin structure before the initiation codon hampers protein synthesis directed by this mRNA. In addition, translation is partially recovered when an in-frame AUG codon is placed upstream of this hairpin. This scanning process takes place without the participation of eIF4A and active eIF2. These results, combined with our findings through modifying the SINV sgmRNA leader sequence, do not support the possibility of a direct initiation from the start codon without previous scanning, or a shunting mechanism. Moreover, studies carried out with sgmRNAs containing two alternative AUG codons within a good context for translation reveal differences in AUG selection which are dependent on the cellular context and the phosphorylation state of eIF2α. Thus, initiation at the additional AUG is strictly dependent on active eIF2, whereas the genuine AUG codon can start translation following eIF2α inactivation. Collectively, our results suggest that SINV sgmRNA is translated by a scanning mechanism without the potential participation of crucial eIFs. A model is presented that explains the mechanism of initiation of mRNAs bearing two alternative initiation codons.  相似文献   

13.
Four isoforms of human fibroblast growth factor 2 (FGF-2) result from alternative initiations of translation at three CUG start codons and one AUG start codon. Here we characterize a new 34-kDa FGF-2 isoform whose expression is initiated at a fifth initiation codon. This 34-kDa FGF-2 was identified in HeLa cells by using an N-terminal directed antibody. Its initiation codon was identified by site-directed mutagenesis as being a CUG codon located at 86 nucleotides (nt) from the FGF-2 mRNA 5′ end. Both in vitro translation and COS-7 cell transfection using bicistronic RNAs demonstrated that the 34-kDa FGF-2 was exclusively expressed in a cap-dependent manner. This contrasted with the expression of the other FGF-2 isoforms of 18, 22, 22.5, and 24 kDa, which is controlled by an internal ribosome entry site (IRES). Strikingly, expression of the other FGF-2 isoforms became partly cap dependent in vitro in the presence of the 5,823-nt-long 3′ untranslated region of FGF-2 mRNA. Thus, the FGF-2 mRNA can be translated both by cap-dependent and IRES-driven mechanisms, the balance between these two mechanisms modulating the ratio of the different FGF-2 isoforms. The function of the new FGF-2 was also investigated. We found that the 34-kDa FGF-2, in contrast to the other isoforms, permitted NIH 3T3 cell survival in low-serum conditions. A new arginine-rich nuclear localization sequence (NLS) in the N-terminal region of the 34-kDa FGF-2 was characterized and found to be similar to the NLS of human immunodeficiency virus type 1 Rev protein. These data suggest that the function of the 34-kDa FGF-2 is mediated by nuclear targets.  相似文献   

14.
Alternative initiation of translation of the human fibroblast growth factor 2 (FGF-2) mRNA at five in-frame CUG or AUG translation initiation codons requires various RNA cis-acting elements, including an internal ribosome entry site (IRES). Here we describe the purification of a trans-acting factor controlling FGF-2 mRNA translation achieved by several biochemical purification approaches. We have identified the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as a factor that binds to the FGF-2 5'-leader RNA and that also complements defective FGF-2 translation in vitro in rabbit reticulocyte lysate. Recombinant hnRNP A1 stimulates in vitro translation at the four IRES-dependent initiation codons but has no effect on the cap-dependent initiation codon. Consistent with a role of hnRNP A1 in the control of alternative initiation of translation, short interfering RNA-mediated knock down of hnRNP A1 specifically inhibits translation at the four IRES-dependent initiation codons. Furthermore, hnRNP A1 binds to the FGF-2 IRES, implicating this interaction in the control of alternative initiation of translation.  相似文献   

15.
Human T-cell lymphotropic virus type I (HTLV-I) double-spliced mRNA exhibits two GUG and two CUG codons upstream to, and in frame with, the sequences encoding Rex and Tax regulatory proteins, respectively. To verify whether these GUG and CUG codons could be used as additional initiation codons of translation, two chimeric constructs were built for directing the synthesis of either Rex–CAT or Tax–CAT fusion proteins. In both cases, the CAT reporter sequence was inserted after the Tax AUG codon and in frame with either the Rex or Tax AUG codon. Under transient expression of these constructs, other proteins of higher molecular mass were synthesized in addition to the expected Rex–CAT and Tax–CAT proteins. The potential non-AUG initiation codons were exchanged for either an AUG codon or a non-initiation codon. This allowed us to demonstrate that the two GUG codons in frame with the Rex coding sequence, and only the second CUG in frame with the Tax coding sequence, were used as additional initiation codons. In HTLV-I infected cells, two Rex and one Tax additional proteins were detected that exhibited molecular mass compatible with the use of the two GUG and the second CUG as additional initiation codons of translation. Comparison of the HTLV-I proviral DNA sequence with that of other HTLV-related retroviruses revealed a striking conservation of the three non-AUG initiation codons, strongly suggesting their use for the synthesis of additional Rex and Tax proteins.  相似文献   

16.
17.
The phosphoprotein of rabies virus is a 297-amino-acid polypeptide encoded by the longest open reading frame of the P gene. Immunoprecipitation experiments using a monoclonal antiserum directed against the P protein detected the P protein and at least four additional shorter products in infected cells, cells transfected with a plasmid encoding the wild-type P protein, and purified virus (CVS strain). By means of deletion analyses, these proteins were shown to be translated from secondary downstream in-frame AUG initiation codons. Immunofluorescence experiments indicated that all these P products were found in the cytoplasm of transfected cells; however, the proteins initiated from the third, fourth, and fifth AUG codons were found mostly in the nucleus. Changes in the 5'-terminal region of the P mRNA (including site-specific mutations, deletions, and insertions) demonstrated that a leaky scanning mechanism is responsible for translation initiation of the P gene at several sites.  相似文献   

18.
The 484-nucleotide (nt) alternatively translated region (ATR) of the human fibroblast growth factor 2 (FGF-2) mRNA contains four CUG and one AUG translation initiation codons. Although the 5'-end proximal CUG codon is initiated by a cap-dependent translation process, the other four initiation codons are initiated by a mechanism of internal entry of ribosomes. We undertook here a detailed analysis of the cis-acting elements defining the FGF-2 internal ribosome entry site (IRES). A thorough deletion analysis study within the 5'-ATR led us to define a 176-nt region as being necessary and sufficient for IRES function at four codons present in a downstream 308-nt RNA segment. Unexpectedly, a single IRES module is therefore responsible for translation initiation at four distantly localized codons. The determination of the FGF-2 5'-ATR RNA secondary structure by enzymatic and chemical probing experiments showed that the FGF-2 IRES contained two stem-loop regions and a G quartet motif that constitute novel structural determinants of IRES function.  相似文献   

19.
20.
The S1 mRNA of avian reovirus is functionally tricistronic, encoding three unrelated proteins, p10, p17 and σC, from three sequential, partially overlapping open reading frames (ORFs). The mechanism of translation initiation at the 3′-proximal σC ORF is currently unknown. Transient RNA transfections using Renilla luciferase reporter constructs revealed only a modest reduction in reporter expression upon optimization of either the p10 or p17 start sites. Insertion of multiple upstream AUG (uAUG) codons in a preferred start codon sequence context resulted in a substantial retention of downstream translation initiation on the S1 mRNA, but not on a heterologous mRNA. The S1 mRNA therefore facilitates leaky scanning to promote ribosome access to the σC start codon. Evidence also indicates that σC translation is mediated by a second scanning-independent mechanism capable of bypassing upstream ORFs. This alternate mechanism is cap-dependent and requires a sequence-dependent translation enhancer element that is complementary to 18S rRNA. Downstream translation initiation of the tricistronic S1 mRNA is therefore made possible by two alternate mechanisms, facilitated leaky scanning and an atypical form of ribosome shunting. This dual mechanism of downstream translation initiation ensures sufficient expression of the σC cell attachment protein that is essential for infectious progeny virus production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号