首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidized low density lipoprotein (oxLDL) induces apoptosis in macrophages, smooth muscle cells, and endothelial cells. To elucidate the molecular mechanism of oxLDL-induced cytotoxicity and determine its tissue specificity, we have used Chinese hamster ovary (CHO)-K1 cells expressing human CD36 (CHO/CD36). Expression of CD36 rendered these cells susceptible to killing by oxLDL. This cytotoxicity was due to the induction of apoptosis. Therefore, CD36 expression is the only requirement for oxLDL-induced apoptosis. Oxysterols apparently mediate the cytotoxicity of oxLDL in macrophage foam cells and endothelial cells. 25-Hydroxycholesterol, at concentrations higher than 1 microg/ml, killed CHO-K1 cells, by apoptosis, in medium supplemented with serum as a source of cholesterol. These effects were not seen in a 25-hydroxycholesterol-resistant CHO/CD36 mutant (OX(R)), which was otherwise capable of undergoing apoptosis in response to staurosporine. This mutant was also resistant to killing by oxLDL, suggesting that oxysterols are at least partially responsible for the toxic effects of oxLDL. Oxysterol-induced apoptosis did not involve regulation of sterol regulatory element-binding protein proteolysis or the cholesterol biosynthetic pathway. 25-Hydroxycholesterol stimulated calcium uptake by CHO-K1 cells within 2 min after addition. Treatment of CHO or THP-1 (macrophage) cells with the calcium channel blocker nifedipine prevented 25-hydroxycholesterol induction of apoptosis. OX(R) showed no enhanced calcium uptake in response to 25-hydroxycholesterol.  相似文献   

2.
Proatherogenic oxidized low-density lipoprotein (oxLDL) induces endothelial apoptosis. We investigated the anti-apoptotic effects of intracellular and extracellular nitric oxide (*NO) donors, iron chelators, cell-permeable superoxide dismutase (SOD), glutathione peroxidase mimetics, and nitrone spin traps. Peroxynitrite (ONOO-)-modified oxLDL induced endothelial apoptosis was measured by DNA fragmentation, TUNEL assay, and caspase-3 activation. Results indicated the following: (i) the lipid fraction of oxLDL was primarily responsible for endothelial apoptosis. (ii) Endothelial apoptosis was potently inhibited by *NO donors and lipophilic phenolic antioxidants. OxLDL severely depleted Bcl-2 levels in endothelial cells and *NO donors restored Bcl-2 protein in oxLDL-treated cells. (iii) The pretreatment of a lipid fraction derived from oxLDL with sodium borohydride or potassium iodide completely abrogated apoptosis in endothelial cells, suggesting that lipid hydroperoxides induce apoptosis. (iv) Metalloporphyrins dramatically inhibited oxLDL-induced apoptosis in endothelial cells. Neither S-nitrosation of caspase-3 nor induction of Hsp70 appeared to play a significant role in the antiapoptotic mechanism of *NO in oxLDL-induced endothelial apoptosis. We propose that cellular lipid peroxyl radicals or lipid hydroperoxides induce an apoptotic signaling cascade in endothelial cells exposed to oxLDL, and that *NO inhibits apoptosis by scavenging cellular lipid peroxyl radicals.  相似文献   

3.
Cultured cells are able to oxidize low-density lipoproteins (LDL) and oxidized LDL (oxLDL), which are present in atherosclerosis areas, exhibit a variety of biological properties potentially involved in atherogenesis. This review is focused on the toxicity of oxLDL, more precisely on the toxic compounds generated during LDL oxidation, the features and the mechanisms of cell death (apoptosis or necrosis) induced by oxLDL. After internalization, toxic oxidized lipids, namely lipid peroxides, oxysterols and aldehydes, induce modifications of cell proteins, elicit oxidative stress, lipid peroxidation and alter various signaling pathways and gene expression. These events may participate in the toxic effect, and converge to trigger an intense, delayed and sustained calcium peak which elicits either apoptosis or necrosis processes. OxLDL-induced apoptosis involves both mitochondrial and death-receptor (Fas/FasL) apoptotic pathways, thereby activating the classical caspase cascade and subsequent biochemical and morphological apoptotic features. When apoptosis is blocked by overexpression of Bcl-2, oxLDL trigger necrosis through a calcium-dependent pathway. Apoptosis occurring in atherosclerotic areas is potentially involved in endothelial cell lining defects, necrotic core formation and plaque rupture or erosion which may trigger atherothrombotic events. However, the precise role of oxLDL in apoptosis/necrosis occurring in vivo in atherosclerotic plaques remains to be clarified.  相似文献   

4.
The epidemiologic studies indicated an association of obesity with increased incidence of colorectal, breast and ovarian cancer. Further studies found a positive correlation between increased serum oxLDL and an increased risk of the three cancers. In contrast, our previous studies found a negative correlation between the serum oxLDL levels and the risk of leukemia and esophageal cancer. Identification of the variability of cytotoxicity of oxLDL-induced on different types of cell lines is important for understanding the mechanism of oxLDL involved in the tumorigenesis. In the present study, we investigated the effective impacts of oxLDL on the proliferation and apoptosis for the human umbilical vein endothelial cells (HUVEC) and two cancer cell lines (EC-9706 and K562/AO2 with multi-drug resistance). HUVEC, K562/AO2 and EC-9706 cell lines were cultured in the presence of oxLDL, and cell proliferation was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, apoptosis and cell cycle by flow cytometer, mRNA expression by RT-PCR and protein expression by Western blot. OxLDL could inhibit proliferation and apoptosis of the three cell lines; however, there were significant differences of effective action on the viability and apoptosis. The dose of oxLDL-induced cytotoxicity on HUVEC was higher than that on the two tumor cells. The antibody of lectin-like oxLDL receptor-1 (LOX-1-ab) can block oxLDL-induced cytotoxicity. Cells apoptosis is mediated by reducing Bcl-2 and increasing Bax and caspase-3 mRNA and protein expression. This study showed the dose of oxLDL-induced cytotoxicity on HUVEC was higher than that on K562/AO2 and EC-9706 tumor cells. The antibody of LOX-1 receptor can block the oxLDL-induced cytotoxicity.  相似文献   

5.
To assess whether ascorbic acid decreases the cytotoxicity of oxidized human low density lipoprotein (oxLDL) in cells involved in atherosclerosis, its interaction with oxLDL was studied in murine RAW264.7 macrophages. Macrophages took up ascorbate to millimolar intracellular concentrations and retained it with little loss over 18 h in culture. Culture of the macrophages with oxLDL enhanced ascorbate uptake. This was associated with increased expression of the ascorbate transporter (SVCT2), which was prevented by ascorbate and by inhibiting the NF-κB pathway. Culture of RAW264.7 macrophages with oxLDL increased intracellular dihydrofluorescein oxidation and lipid peroxidation, both of which were decreased by intracellular ascorbate. Ascorbate also protected the cells against oxLDL-induced cytotoxicity and apoptosis, but it did not affect macrophage accumulation of lipid from oxLDL or oxLDL-induced increases in macrophage cytokine secretion. These results suggest that ascorbate protects macrophages against oxLDL-induced oxidant stress and subsequent apoptotic death without impairing their function.  相似文献   

6.
Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular cells may participate to plaque instability and rupture. Caveolin-1 has emerged as an important regulator of several signal transduction pathways and processes that play a role in atherosclerosis. In this study we examined the potential role of caveolin-1 in the regulation of oxLDL-induced Ca2+ signaling and apoptosis in vascular smooth muscle cells (VSMC). Cells expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis, and this was correlated with enhanced Ca2+ entry and pro-apoptotic events. Moreover, caveolin-1 silencing by small interfering RNA decreased the level of apoptotic cells after oxLDL treatment. These findings provide new insights about the potential role of caveolin-1 in the regulation of oxLDL-induced apoptosis in vascular cells and its contribution to the instability of the plaque.  相似文献   

7.
目的:探讨微小RNA-133b(miR-133b)靶向抑制富含谷氨酰胺三十四肽重复序列的小蛋白质分子(SGTB)对氧化低密度脂蛋白(oxLDL)诱导的血管内皮细胞损伤的影响。方法:采用100 μg/ml的oxLDL诱导人脐静脉血管内皮细胞(EVC-304)24 h构建血管内皮细胞损伤模型。将EVC-304细胞分为对照组、oxLDL组(oxLDL处理)、oxLDL+miR-NC组(转染20 nmol/L miR-NC+oxLDL处理)、oxLDL+miR-133b组(转染20 nmol/L miR-133b mimics+oxLDL处理)、oxLDL+si-NC组(转染20 nmol/L si-NC+oxLDL处理)、oxLDL+si-SGTB组(转染20 nmol/L si-SGTB+oxLDL处理)、oxLDL+miR-133b+pcDNA组(转染20 nmol/L si-SGTB和pcDNA+oxLDL处理)、oxLDL+miR-133b+pcDNA-SGTB组(转染20 nmol/L si-SGTB和pcDNA-SGTB处理)。实时荧光定量PCR(qRT-PCR)和蛋白质印记(Western blot)检测miR-133b和SGTB的表达水平;流式细胞术检测细胞凋亡;试剂盒检测丙二醛(MDA)含量、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)的活性;Western blot检测B细胞淋巴瘤/白血病-2(Bcl-2)和Bcl-2相关X蛋白(Bax)的表达水平。双荧光素酶报告基因实验和Western blot验证miR-133b对SGTB的靶向调控关系。结果:与对照组比较,oxLDL诱导后EVC-304细胞miR-133b、Bcl-2的表达水平显著降低(P<0.05),SGTB、Bax的表达水平显著升高(P<0.05),MDA含量和细胞凋亡率显著增加(P<0.05),SOD和GSH-Px活性显著降低(P<0.05)。过表达miR-133b或干扰SGTB均可抑制oxLDL诱导的EVC-304细胞凋亡和氧化应激损伤(P< 0.05)。miR-133b与SGTB直接结合,过表达miR-133b显著下调SGTB表达(P<0.05),抑制miR-133b显著上调SGTB表达(P<0.05)。过表达SGTB可逆转过表达miR-133b对oxLDL诱导的血管内皮细胞损伤的影响(P<0.05)。结论:miR-133b通过靶向抑制SGTB的表达,可减轻oxLDL诱导的血管内皮细胞氧化应激损伤和细胞凋亡。  相似文献   

8.
Here, we investigated the therapeutic potential of IL-10 by testing its effects on oxLDL-induced lipoprotein uptake and apoptosis by flow cytometry in THP-1-derived macrophages. The mRNA and protein expressions of lipid scavenger receptors (SR-A, CD36) and apoptosis-related proteins (Bcl-2, Bak-1) were also detected. Co-incubation of oxLDL with IL-10 reduced DiI-oxLDL uptake by 16.1 ± 3.8%, 35.2 ± 3.8% and 28.9 ± 1.8% at 6, 12 and 24 h of treatment, respectively. Furthermore, treatment with oxLDL for 24 h enhanced the SR-A mRNA and protein expressions by 89.3 ± 17.1% and 70.1 ± 17.6%, respectively. IL-10 abrogated the oxLDL-induced SR-A mRNA expression by 50.2 ± 3.9% and its protein by 45.6 ± 1.9%. Meanwhile IL-10 had no effect on the oxLDL-induced increase of CD36 expression. IL-10 inhibited the oxLDL-induced cell apoptosis in a time-dependent manner by 17.3 ± 3.3%, 36.4 ± 2.8% and 31.0 ± 4.3% at 6, 12 and 24 h, respectively. OxLDL increased Bak-1 mRNA and protein expressions by 38.4 ± 13.3% and 36.9 ± 12.1%, respectively. However co-stimulation of oxLDL with IL-10 for 24 h inhibited Bak-1 expression to 28.4 ± 7.2% (mRNA) and 25.7 ± 6.3% (protein). Meanwhile, IL-10 had no effect on the oxLDL-induced decrease of Bcl-2 expression. Our findings suggested that IL-10 reduced the oxLDL-induced lipoprotein uptake and apoptosis partly via down-regulating the oxLDL-induced expression of SR-A and Bak-1 in THP-1-derived macrophages.  相似文献   

9.
Oxidized low-density lipoproteins (oxLDL) play a role in the genesis of atherosclerosis. OxLDL are able to induce apoptosis of vascular cells, which is potentially involved in the formation of the necrotic center of atherosclerotic lesions, plaque rupture, and subsequent thrombotic events. Because oxLDL may induce structural modifications of cell protein and altered proteins may impair cell viability, the present work aimed to evaluate the extent of protein alterations, the degradation of modified proteins through the ubiquitin-proteasome system (a major degradative pathway for altered and oxidatively modified proteins) and their role during apoptosis induced by oxLDL. This paper reports the following: 1) oxLDL induce derivatization of cell proteins by 4-hydroxynonenal (4-HNE) and ubiquitination. 2) Toxic concentrations of oxLDL elicit a biphasic effect on proteasome activity. An early and transient activation of endogenous proteolysis is followed rapidly by a subsequent decay (resulting probably from the 26S proteasome inhibition) and followed later by the inhibition of the 20S proteasome (as assessed by inhibition of sLLVY-MCA hydrolysis). 3) Specific inhibitors of proteasome (lactacystin and proteasome inhibitor I) potentiated considerably the toxicity of oxLDL (nontoxic doses of oxLDL became severely toxic). The defect of the ubiquitination pathway (in temperature-sensitive mutants) also potentiated the toxicity of oxLDL. This suggests that the ubiquitin-proteasome pathway plays a role in the cellular defenses against oxLDL-induced toxicity. 4) Dinitrophenylhydrazine (DNPH), an aldehyde reagent, prevented both the oxLDL-induced derivatization of cell proteins and subsequent cytotoxicity. Altogether, the reported data suggest that both derivatization of cell proteins (by 4-HNE and other oxidized lipids) and inhibition of the proteasome pathway are involved in the mechanism of oxLDL-induced apoptosis.  相似文献   

10.
Epidemiological studies indicate that patients suffering from atherosclerosis are predisposed to develop osteoporosis. Atherogenic determinants such as oxidized low-density lipoprotein (oxLDL) particles have been shown both to stimulate the proliferation and promote apoptosis of bone-forming osteoblasts. Given such opposite responses, we characterized the oxLDL-induced hormesis-like effects in osteoblasts. Biphasic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reductive activity responses were induced by oxLDL where low concentrations (10–50 µg/ml) increased and high concentrations (from 150 µg/ml) reduced the MTT activity. Cell proliferation stimulation by oxLDL partially accounted for the increased MTT activity. No alteration of mitochondria mass was noticed, whereas low concentrations of oxLDL induced mitochondria hyperpolarization and increased the cellular levels of reactive oxygen species (ROS). The oxLDL-induced MTT activity was not related to intracellular ROS levels. OxLDL increased NAD(P)H-associated cellular fluorescence and flavoenzyme inhibitor diphenyleneiodonium reduced basal and oxLDL-induced MTT activity, suggesting an enhancement of NAD(P)H-dependent cellular reduction potential. Low concentrations of oxLDL reduced cellular thiol content and increased metallothionein expression, suggesting the induction of compensatory mechanisms for the maintenance of cell redox state. These concentrations of oxLDL reduced osteoblast alkaline phosphatase activity and cell migration. Our results indicate that oxLDL particles cause hormesis-like response with the stimulation of both proliferation and cellular NAD(P)H-dependent reduction potential by low concentrations, whereas high concentrations lead to reduction of MTT activity associated with the cell death. Given the effects of low concentrations of oxLDL on osteoblast functions, oxLDL may contribute to the impairment of bone remodeling equilibrium. osteoblasts; atherosclerosis; oxysterol  相似文献   

11.
The dihydrochalcone phloretin induced apoptosis in B16 mouse melanoma 4A5 cells and HL60 human leukemia cells. Phloretin was suggested to induce apoptosis in B16 cells mainly through the inhibition of glucose transmembrane transport. The phloretin-induced apoptosis in B16 cells was inhibited by actinomycin D, Ac-YVAD-CHO caspase-1-like inhibitor, and Ac-DEVD-CHO caspase-3-like inhibitor. During the induction of apoptosis by phloretin, the expression of Bax protein in B16 cells increased and the levels of p53, Bcl-2, and Bcl-XL proteins did not change. Our results suggested that phloretin induced apoptosis through the promotion of Bax protein expression and caspases activation. On the other hand, phloretin may induce apoptosis in HL60 cells through the inhibition of protein kinase C activity because phloretin inhibited protein kinase C activity in HL60 cells more than that in B16 cells. The phloretin induced-apoptosis in HL60 cells was not inhibited by actinomycin D and the caspase-1-like inhibitor, but slightly inhibited by the caspase-3-like inhibitor. Phloretin reduced the level of caspase 3 protein in HL60 cells, but not the level of the Bcl-2 protein. Phloretin did not increase the level of Bax protein. Phloretin was suggested to induce apoptosis in HL60 cells through the inhibition of protein kinase C activity, followed by the pathway, which is different from that in B16 cells.  相似文献   

12.
Interleukin-10 (IL-10) may have therapeutic potential in various inflammatory diseases, including atherosclerosis, as it can inhibit oxLDL-induced foam cell formation and apoptosis in macrophages. This study investigated the effect of IL-10 on mitogen-activated protein kinase (MAPK) activation, and apoptosis induced by oxidized low-density lipoprotein (oxLDL) in cultured human umbilical vein endothelial cells (HUVEC). The results demonstrated that IL-10 significantly blocked the phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) and apoptosis induced by oxLDL. The inhibitory effect of IL-10 on oxLDL-induced apoptosis was partially dependent on reduced p38, but not JNK, phosphorylation. This study also discovered a linkage between IL-10 and p38 MAPK signaling in oxLDL-induced endothelial cell apoptosis. Interestingly, this study found that lectin-like oxidized LDL receptor-1 (LOX-1) was the only scavenger receptor, on the surface of HUVEC, that was upregulated by oxLDL and the increase in LOX-1 was not suppressed by IL-10. This study confirmed that IL-10 significantly upregulated the expression of suppressor of cytokine signaling-3 (SOCS3), whereas SOCS3 knockdown by siRNA effectively blocked the inhibitory effect of IL-10 on p38 MAPK-dependent apoptosis induced by oxLDL. These results showed for the first time, that IL-10 modulated oxLDL-induced apoptosis by upregulating SOCS3, which then interrupted p38 MAPK activation in endothelial cells. These findings support the essential role of p38 MAPK in the interplay of oxLDL and IL-10 in endothelial apoptosis.  相似文献   

13.
Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs) and up-regulated in atherosclerotic lesion by various stimuli, such as oxidized low-density lipoprotein (oxLDL). Calcium-sensing receptor (CaSR) is also expressed in VSMCs, but it remains unclear whether CaSR is associated with overproduction of MMP-2 in VSMCs. In this study, the expression of MMP-2 was detected by real-time PCR and Western blot analysis, and the gelatinolytic activity of MMP-2 was measured using gelatin zymography. Our results showed that oxLDL enhanced MMP-2 expression and activity in rat aortic VSMCs in a time- and dose-dependent manner. In addition, CaSR expression was up-regulated by oxLDL. Manipulating CaSR function in these cells by NPS2390 (an antagonist of CaSR) or GdCl(3) (an agonist of CaSR) affected the oxLDL-induced MMP-2 production. In VSMCs, oxLDL stimulated the rapid activation of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, as determined by Western blot analysis. Phosphorylation of Akt and MMP-2 production stimulated by oxLDL were attenuated by LY294002 (a specific inhibitor of PI3K). Activation of Akt was suppressed by NPS2390 but enhanced by GdCl(3). In contrast, oxLDL had no stimulatory effect on the phosphorylation of JNK, and pretreatment with SP600125 (an inhibitor of JNK) produced no significant effect on oxLDL-induced MMP-2 production. These results suggest that CaSR mediates oxLDL-induced MMP-2 production in VSMCs via PI3K/Akt signal pathway.  相似文献   

14.
The Bcl-2 inhibitor ABT-737 has shown promising antitumor efficacy in vivo and in vitro. However, some reports have demonstrated that HCC cells are resistant to ABT-737, and the corresponding molecular mechanisms of this resistance are not well known. In this study, we found that HCC cells with high levels of Bcl-2 were markedly resistant to ABT-737 compared to HCC cells with low levels of Bcl-2. In HCC cells with high levels of Bcl-2 (such as HepG2 cells), ABT-737 induced protective autophagy via the sequential triggering of reactive oxygen species (ROS) accumulation, short-term activation of JNK, enhanced phosphorylation of Bcl-2, and dissociation of Beclin 1 from the Bcl-2/Beclin 1 complex. Moreover, autophagy suppressed the overactivation of the ROS–JNK pathway and protected against apoptosis. In HCC cells with low levels of Bcl-2 (i.e., Huh7 cells), ABT-737 induced apoptosis via the sequential stimulation of ROS, sustained activation of JNK, enhanced translocation of Bax from the cytosol to the mitochondria, and release of cytochrome c. In sum, this study indicated that the activation of the ROS–JNK–autophagy pathway may be an important mechanism by which HCC cells with high levels of Bcl-2 are resistant to ABT-737.  相似文献   

15.
The ability of low-dose ionizing radiation (1 Gy) to modulate the activities of the mitogen-activated protein kinase (MAPK) and Jun NH2-terminal kinase (JNK1) cascades in human myeloid leukemia (HL60/pCEP4) cells and in cells overexpressing the anti-apoptosis protein BCL2 (HL60/Bcl-2) was investigated. Radiation exposure caused prolonged (3-4 h) activation of MAPK in HL60 cells. The ability of radiation to activate the MAPK pathway was attenuated by 30% in cells overexpressing BCL2. In contrast, low-dose irradiation of HL60/pCEP4 and HL60/Bcl-2 cells failed to modulate JNK1 activity. Inhibition of the MAPK pathway by use of the specific MEK1/2 inhibitor (10 microM PD98059) in both HL60/pCEP4 and HL60/Bcl-2 cells prior to irradiation permitted a similar prolonged radiation-induced activation of JNK1. Furthermore, combined treatment with PD98059 and radiation in both cell types caused a large decrease in growth of cells in suspension culture, a large increase in apoptosis, and a 90% decline in clonogenicity when compared to either treatment alone. Reduced proliferation after combined irradiation and PD98059 treatment in both cell types correlated with reduced Cdc2 activity and arrest in G2/M phase of the cell cycle. These data demonstrate that inhibition of MEK1/2 leading to blockade of the MAPK activation increases the radiation sensitivity of HL60 cells and decreases the ability of these cells to recover from the radiation-induced arrest at the G2/M-phase cell cycle checkpoint. In addition, our data demonstrate that elevated expression of BCL2 does not abrogate the ability of inhibition of MAPK to potentiate radiation-induced cell death in HL60 cells.  相似文献   

16.
Zhang M  Zhang HQ  Xue SB 《Cell research》2000,10(3):213-220
Apoptosis manifests in two major execution programs downstream of the death signal:the caspase pathway and organelle dysfunction.An important antiapoptosis factor,Bcl-2 protein,contributes in caspase pathway of apoptosis.Calcium,an important intracellular signal element in cells,is also observed to have changes during apoptosis,which maybe affected by Bcl-2 protein.We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells,there‘s change of intracellular calcium distribution,oving from cytoplast especially Golgi‘s apparatus to nucleus and accumulating there with the highest concentration.We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells,which can be inhibited by overexpression of Bcl-2 protein.No sign of apoptosis or intracellular calcium movement from Golgi‘s apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO,a specific inhibitor of caspase-3.The results indicate that activated caspase-2 can promote the movement of intracellular calcium from Golgi‘s apparatus to nucleus,and the process is inhibited by Ac-DEVD-CHO(inhibitor of caspase-3),and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase-3.Calcium relocalization in apoptosis seems to be irreversible,which is different from the intracellular calcium changes caused by growth factor.  相似文献   

17.
Vascular endothelial cell (VEC) apoptosis is the main event occurring during the development of atherosclerosis. Pterostilbene (PT), a natural dimethylated analog of resveratrol, has been the subject of intense research in cancer and inflammation. However, the protective effects of PT against oxidized low-density lipoprotein (oxLDL)-induced apoptosis in VECs have not been clarified. We investigated the anti-apoptotic effects of PT in vitro and in vivo in mice. PT at 0.1–5 μM possessed antioxidant properties comparable to that of trolox in a cell-free system. Exposure of human umbilical vein VECs (HUVECs) to oxLDL (200 μg/ml) induced cell shrinkage, chromatin condensation, nuclear fragmentation, and cell apoptosis, but PT protected against such injuries. In addition, PT injection strongly decreased the number of TUNEL-positive cells in the endothelium of atherosclerotic plaque from apoE−/− mice. OxLDL increased reactive oxygen species (ROS) levels, NF-κB activation, p53 accumulation, apoptotic protein levels and caspases-9 and -3 activities and decreased mitochondrial membrane potential (MMP) and cytochrome c release in HUVECs. These alterations were attenuated by pretreatment with PT. PT inhibited the expression of lectin-like oxLDL receptor-1 (LOX-1) expression in vitro and in vivo. Cotreatment with PT and siRNA of LOX-1 synergistically reduced oxLDL-induced apoptosis in HUVECs. Overexpression of LOX-1 attenuated the protection by PT and suppressed the effects of PT on oxLDL-induced oxidative stress. PT may protect HUVECs against oxLDL-induced apoptosis by downregulating LOX-1-mediated activation through a pathway involving oxidative stress, p53, mitochondria, cytochrome c and caspase protease. PT might be a potential natural anti-apoptotic agent for the treatment of atherosclerosis.  相似文献   

18.
Oxidized low-density lipoproteins (oxLDL) play a critical role in atherogenesis. We investigated the apoptotic process in human monocytic THP-1 cell line, exposed to oxLDL generated by treatment of native LDL either with hypochlorous acid (HOCl), mainly affecting the protein moiety, or with copper sulfate (CuSO(4)), mainly affecting the lipid moiety. After incubation with both types of oxLDL, we observed: (i) microscopy signs of apoptosis in THP-1 cells, (ii) a significant increase of apoptotic cells proportional to LDL protein concentration, either by annexin V or by cell cycle phase analysis with propodium iodide flow cytometry, (iii) a reduction of THP-1 cell apoptosis in presence of the caspase inhibitor Z-VAD.fmk, (iv) the resistance of THP-1 cells apoptosis after PMA-elicited differentiation. In conclusion, HOCl-oxLDL are as potent as Cu-oxLDL to induce high rates of apoptosis in monocytes through a caspase-dependent pathway. Moreover, the resistance of differentiated THP-1 cells to oxLDL-induced apoptosis is compatible with the hypothesis that mature macrophages have prolonged survival and thereby enhance the atherogenic process.  相似文献   

19.
Oxidized low-density lipoprotein (oxLDL) induces endothelial cell death through the activation of NF-κB and AP-1 pathways. TRAF3IP2 is a redox-sensitive cytoplasmic adapter protein and an upstream regulator of IKK/NF-κB and JNK/AP-1. Here we show that oxLDL-induced death in human primary coronary artery endothelial cells (ECs) was markedly attenuated by the knockdown of TRAF3IP2 or the lectin-like oxLDL receptor 1 (LOX-1). Further, oxLDL induced Nox2/superoxide-dependent TRAF3IP2 expression, IKK/p65 and JNK/c-Jun activation, and LOX-1 upregulation, suggesting a reinforcing mechanism. Similarly, the lysolipids present in oxLDL (16:0-LPC and 18:0-LPC) and minimally modified LDL also upregulated TRAF3IP2 expression. Notably, whereas native HDL3 reversed oxLDL-induced TRAF3IP2 expression and cell death, 15-lipoxygenase-modified HDL3 potentiated its proapoptotic effects. The activators of the AMPK/Akt pathway, adiponectin, AICAR, and metformin, attenuated superoxide generation, TRAF3IP2 expression, and oxLDL/TRAF3IP2-mediated EC death. Further, both HDL3 and adiponectin reversed oxLDL/TRAF3IP2-dependent monocyte adhesion to endothelial cells in vitro. Importantly, TRAF3IP2 gene deletion and the AMPK activators reversed oxLDL-induced impaired vasorelaxation ex vivo. These results indicate that oxLDL-induced endothelial cell death and dysfunction are mediated via TRAF3IP2 and that native HDL3 and the AMPK activators inhibit this response. Targeting TRAF3IP2 could potentially inhibit progression of atherosclerotic vascular diseases.  相似文献   

20.
氧化性低密度脂蛋白(oxygenized low density lipoprotein,oxLDL)水平的升高不仅引发动脉粥样硬化,还与癌症等疾病的发生有密切关系。研究发现,高水平的oxLDL在引发细胞凋亡的同时,也诱导多种细胞自噬。本文归纳了oxLDL与血管内皮细胞、乳腺上皮细胞、结肠癌细胞、颗粒细胞和神经细胞自噬关系的最新研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号