首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Among the diverse risk factors involved in atherosclerosis, LDL are thought to become atherogenic after undergoing oxidative modifications, characterized by oxidized lipid formation and structural alterations of apoB. Oxidized LDL alter various signaling pathways and exhibit a broad range of biological responses including inflammation, gene expression, cell proliferation or apoptosis. The biological effects of oxidized LDL are related to the presence of peroxidation products such as hydroperoxides, lysophosphatidylcholines, oxysterols and aldehydes.4-Hydroxynonenal (HNE) is one of the most abundant aldehydes formed during the oxidation of polyunsaturated fatty acids in LDL and in membranes. It is able to react with thiols and free amino group residues of proteins. HNE is involved in apoB modifications that alter LDL metabolism and cell protein-adduct formation which may mediate in part the biological effects of oxidized LDL. We report here that HNE delivered to cells by oxidized LDL reacts with cellular proteins, for instance with tyrosine kinase receptors (RTK) such as EGFR and PDGFR. HNE induces in vitro derivatization and tyrosine phosphorylation of RTK (the fine molecular mechanism and conformational changes remain to be elucidated). In intact living cells, oxidized LDL (and pure HNE) trigger HNE-adduct formation and activation of PDGFR and EGFR, through an antioxidant-insensitive and reactive oxygen species independent mechanism. The presence of HNE-PDGFR adducts in atherosclerotic areas lead one to hypothesize that oxidized lipids may also react in vivo with membrane RTK, thereby disturbing their cellular functions.  相似文献   

2.
We compared the apoptotic mechanism involved in U937 human monocytic cell line in presence of oxidized low-density lipoproteins (oxLDL) obtained after treatment with hypochlorous acid (HOCl) or copper (Cu).Both types of oxLDL induced U937 apoptotic cell death via the mitochondrial pathway. In contrast to HOCl-oxLDL, Cu-oxLDL induced apoptosis via a caspase-independent mechanism, with no activation of pro-caspase-3, but via the release of apoptosis inducing factor (AIF) from mitochondria.The apoptotic program of the monocyte differs depending on the mode of LDL oxidation, based on differences in the oxidatively modified components of the two oxLDL types.  相似文献   

3.
4.
The impact of dietary fatty acids in atherosclerosis development may be partially attributed to their effect on macrophage cholesterol homeostasis. This process is the result of interplay between cholesterol uptake and efflux, which are permeated by inflammation and oxidative stress. Although saturated fatty acids (SAFAs) do not influence cholesterol efflux, they trigger endoplasmic reticulum stress, which culminates in increased lectin-like oxidized LDL (oxLDL) receptor (LOX1) expression and, consequently, oxLDL uptake, leading to apoptosis. Unsaturated fatty acids prevent most SAFAs-mediated deleterious effects and are generally associated with reduced cholesterol efflux, although α-linolenic acid increases cholesterol export. Trans fatty acids increase macrophage cholesterol content by reducing ABCA-1 expression, leading to strong atherosclerotic plaque formation. As isomers of conjugated linoleic acid (CLAs) are strong PPAR gamma ligands, they induce cluster of differentiation (CD36) expression, increasing intracellular cholesterol content. Considering the multiple effects of fatty acids on intracellular signaling pathways, the purpose of this review is to address the role of dietary fat in several mechanisms that control macrophage lipid content, which can determine the fate of atherosclerotic lesions.  相似文献   

5.
Oxidized low-density lipoproteins (oxLDL) play a role in the genesis of atherosclerosis. OxLDL are able to induce apoptosis of vascular cells, which is potentially involved in the formation of the necrotic center of atherosclerotic lesions, plaque rupture, and subsequent thrombotic events. Because oxLDL may induce structural modifications of cell protein and altered proteins may impair cell viability, the present work aimed to evaluate the extent of protein alterations, the degradation of modified proteins through the ubiquitin-proteasome system (a major degradative pathway for altered and oxidatively modified proteins) and their role during apoptosis induced by oxLDL. This paper reports the following: 1) oxLDL induce derivatization of cell proteins by 4-hydroxynonenal (4-HNE) and ubiquitination. 2) Toxic concentrations of oxLDL elicit a biphasic effect on proteasome activity. An early and transient activation of endogenous proteolysis is followed rapidly by a subsequent decay (resulting probably from the 26S proteasome inhibition) and followed later by the inhibition of the 20S proteasome (as assessed by inhibition of sLLVY-MCA hydrolysis). 3) Specific inhibitors of proteasome (lactacystin and proteasome inhibitor I) potentiated considerably the toxicity of oxLDL (nontoxic doses of oxLDL became severely toxic). The defect of the ubiquitination pathway (in temperature-sensitive mutants) also potentiated the toxicity of oxLDL. This suggests that the ubiquitin-proteasome pathway plays a role in the cellular defenses against oxLDL-induced toxicity. 4) Dinitrophenylhydrazine (DNPH), an aldehyde reagent, prevented both the oxLDL-induced derivatization of cell proteins and subsequent cytotoxicity. Altogether, the reported data suggest that both derivatization of cell proteins (by 4-HNE and other oxidized lipids) and inhibition of the proteasome pathway are involved in the mechanism of oxLDL-induced apoptosis.  相似文献   

6.
The oxidized low-density lipoprotein (oxLDL)-dependent activation of the lectin-like oxLDL receptor-1 (LOX-1) triggers apoptosis in vascular cells and appears to be involved in atherosclerosis. Autophagy might be an alternate to apoptosis in endothelial cells. The EA.hy926 endothelial cell line has been reported to undergo necrosis under oxLDL stimulation. For this reason, we studied the expression of LOX-1 and its oxLDL-dependent function in EA.hy926 cells under serum starvation. Untreated and oxLDL-treated cells expressed the LOX-1 protein at similar levels 6h after starvation. After 24h without oxLDL and with native LDL (nLDL), statistically significant higher levels were found in LOX-1 than in the oxLDL-treated probes. The oxLDL cultures with low LOX-1 expression displayed stronger features of autophagy than those with nLDL as there were remodelling of actin filaments, disrupture of adherens junctions (immunofluorescence staining), and autophagosomes with the characteristic double membrane at the ultrastructural level. For the advanced oxLDL exposure times (18 and 24 h), autophagic vacuoles/autophagolysosomes were morphologically identified accompanied by a decrease in lysosomes. The autophagosome marker protein MAP LC3-II (Western blotting) was significantly augmented 6 and 18 h after oxLDL treatment compared with cultures treated with nLDL and medium alone. Signs of apoptosis were undetectable in cultures under oxLDL exposure, yet present under staurosporin (apoptosis inducer), i.e. presence of apoptotic bodies and cleaved caspase 3. We conclude that serum starvation upregulates LOX-1 in EA.hy926 cells, whereas the additional oxLDL treatment downregulates the receptor and intensifies autophagy probably by increase in oxidative stress.  相似文献   

7.
Baird SK  Hampton MB  Gieseg SP 《FEBS letters》2004,578(1-2):169-174
Monocytic cell lines have been extensively used to characterize and model various features of the atherogenic process. We found striking differences in the apoptotic pathways of U937 cells and THP-1 cells exposed to copper-oxidized LDL. While phosphatidylserine exposure occurred in both lines, caspase activation was only apparent in the THP-1 cells. OxLDL caused caspase activity to decrease below that seen in untreated U937 cells, and this corresponded with a loss in intracellular thiols. In conclusion, exposure of U937 cells to oxLDL did not trigger a conventional apoptosis response, but still resulted in phosphatidylserine externalization.  相似文献   

8.
Mechanisms of oxysterol-induced apoptosis   总被引:7,自引:0,他引:7  
The rationale for the present review is that oxysterols found in oxidized LDL (oxLDL) play a role in atherogenesis. This perspective is based on studies that show that induction of apoptosis in vascular cells is an important process in atherogenesis, that apoptosis can be induced by oxLDL, and that the oxysterol component of oxLDL is responsible for its proapoptotic activity. The evidence for these concepts is reviewed, as are studies on the mechanisms by which oxysterols can induce apoptosis. An elevation in intracellular calcium appears to be an early signal transduction event that leads to apoptosis through both the extrinsic and intrinsic apoptotic pathways.  相似文献   

9.
Owing at least in part to oxysterol components that can induce apoptosis, oxidized LDL (oxLDL) is cytotoxic to mammalian cells with receptors that can internalize it. Vascular cells possess such receptors, and it appears that the apoptotic response of vascular cells to the oxysterols borne by oxLDL is an important part of the atherogenic effects of oxLDL. Thus, an analysis of the signaling pathway of apoptotic induction by oxysterols is of value in understanding the development of atherosclerotic plaque. In a prior study, we demonstrated an induction of calcium ion flux into cells treated with 25-hydroxycholesterol (25-OHC) and showed that this response is essential for 25-OHC-induced apoptosis. One possible signal transduction pathway initiated by calcium ion fluxes is the activation of cytosolic phospholipase A2 (cPLA2). In the current study, we demonstrate that activation of cPLA2 does occur in both macrophages and fibroblasts treated with 25-OHC or oxLDL. Activation is evidenced by 25-OHC-induced relocalization of cPLA2 to the nuclear envelope and arachidonic acid release. Loss of cPLA2 activity, either through genetic knockout in mice, or by treatment with a cPLA2 inhibitor, results in an attenuation of arachidonic acid release as well as of the apoptotic response to oxLDL in peritoneal macrophages or to 25-OHC in cultured fibroblast and macrophage cell lines.  相似文献   

10.
11.
Oxidized low density lipoprotein (oxLDL) is believed to play a central role in atherogenesis. LDL is oxidized in the arterial intima by mechanisms that are still only partially understood. OxLDL is then taken up by macrophages through scavenger receptor-mediated endocytosis, which then leads to cellular damage, including apoptosis. The complex mechanisms by which oxLDL induces cell injury are mostly unknown. This study has demonstrated that oxLDL-induced damage of macrophages is associated with iron-mediated intralysosomal oxidative reactions, which cause partial lysosomal rupture and ensuing apoptosis. This series of events can be prevented by pre-exposing cells to the iron-chelator, desferrioxamine (DFO), whereas it is augmented by pretreating the cells with a low molecular weight iron complex. Since both DFO and the iron complex would be taken up by endocytosis, and thus directed to the lysosomal compartment, the results suggest that the normal contents of lysosomal low molecular weight iron may play an important role in oxLDL-induced cell damage, presumably by catalyzing intralysosomal fragmentation of lipid peroxides and the formation of toxic aldehydes and oxygen-centered radicals.  相似文献   

12.
Oxidized low density lipoprotein (oxLDL) is believed to play a central role in atherogenesis. LDL is oxidized in the arterial intima by mechanisms that are still only partially understood. OxLDL is then taken up by macrophages through scavenger receptor-mediated endocytosis, which then leads to cellular damage, including apoptosis. The complex mechanisms by which oxLDL induces cell injury are mostly unknown. This study has demonstrated that oxLDL-induced damage of macrophages is associated with iron-mediated intralysosomal oxidative reactions, which cause partial lysosomal rupture and ensuing apoptosis. This series of events can be prevented by pre-exposing cells to the iron-chelator, desferrioxamine (DFO), whereas it is augmented by pretreating the cells with a low molecular weight iron complex. Since both DFO and the iron complex would be taken up by endocytosis, and thus directed to the lysosomal compartment, the results suggest that the normal contents of lysosomal low molecular weight iron may play an important role in oxLDL-induced cell damage, presumably by catalyzing intralysosomal fragmentation of lipid peroxides and the formation of toxic aldehydes and oxygen-centered radicals.  相似文献   

13.
14.
BACKGROUND: Oxidized low-density lipoprotein (oxLDL) promotes apoptosis in atherosclerotic plaques in the vascular wall, a process mediated through its oxidized lipids. 4-Hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE), derived from oxidation of n-6 and n-3 fatty acids, respectively, are among the major oxidized products in oxLDL. HYPOTHESIS: This study hypothesized that eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA)-rich versus linoleic acid-rich oxLDL obtained from postmenopausal women and HNE versus HHE differentially influence apoptosis in U937 cells. EXPERIMENTAL DESIGN: Thirty healthy postmenopausal women were supplemented with 14 g/day safflower oil (SO), 7 g/day of both fish oil and SO (low dose LFO) or 14 g/day fish oil (high dose HFO) for 5 weeks. Low-density lipoprotein, obtained after supplementation, was oxidized with 5 microM CuSO(4) at 37 degrees C for 6 h. The concentration of cholesteryl ester hydroperoxides (CEOOH) and conjugated dienes was measured in the oxidized LDL (oxLDL). U937 cells were incubated with the oxLDL, 10 microM of HHE, 7 muM of HHE plus 3 microM of HNE, 5 microM of both HHE and HNE or 10 microM of HNE and the extent of apoptosis measured three ways. RESULTS: The concentration of CEOOH and conjugated dienes in oxLDL did not differ among the three treatment groups. The percent of apoptotic cells was approximately 40% lower when incubated with oxLDL obtained from the HFO-supplemented group than the SO-supplemented group measured by both the Annexin V and the DNA fragmentation assays (P = .04 and .004, respectively). Apoptosis of U937 cells was significantly lower in cells incubated with 10 microM of HHE, and mixtures of HHE and HNE than the 10 microM HNE when measured by the Annexin V, DNA fragmentation and 4,6-diamidino-2-phenylindole (DAPI) staining. CONCLUSIONS: These data suggest that the cardioprotective properties of n-3 fatty acids may derive in part from their less reactive oxidized lipid metabolites.  相似文献   

15.
16.
Oxidized low density lipoproteins (oxLDL) participate in atherosclerosis plaque formation, rupture, and subsequent thrombosis. Because oxLDL are toxic to cultured cells and Bcl-2 protein prevents apoptosis, the present work aimed to study whether Bcl-2 may counterbalance the toxicity of oxLDL. Two experimental model systems were used in which Bcl-2 levels were modulated: 1) lymphocytes in which the (high) basal level of Bcl-2 was reduced by antisense oligonucleotides; 2) HL60 and HL60/B (transduced by Bcl-2) expressing low and high Bcl-2 levels, respectively. In cells expressing relatively high Bcl-2 levels (lymphocytes and HL60/B), oxLDL induced mainly primary necrosis. In cells expressing low Bcl-2 levels (antisense-treated lymphocytes, HL60 and ECV-304 endothelial cells), the rate of oxLDL-induced apoptosis was higher than that of primary necrosis. OxLDL evoked a sustained calcium rise, which is a common trigger to necrosis and apoptosis since both types of cell death were blocked by the calcium chelator EGTA. Conversely, a sustained calcium influx elicited by the calcium ionophore A23187 induced necrosis in cells expressing high Bcl-2 levels and apoptosis in cells expressing low Bcl-2 levels. This suggests that Bcl-2 acts downstream from the calcium peak and inhibits only the apoptotic pathway, not the necrosis pathway, thus explaining the apparent shift from oxLDL-induced apoptosis toward necrosis when Bcl-2 is overexpressed.  相似文献   

17.
Macrophages play a central role in the development of atherosclerosis through the accumulation of oxidized LDL (oxLDL). AIM (Spα/Api6) has previously been shown to promote macrophage survival; however, its function in atherogenesis is unknown. Here we identify AIM as a critical factor that protects macrophages from the apoptotic effects of oxidized lipids. AIM protein is induced in response to oxLDL loading and is highly expressed in foam cells within atherosclerotic lesions. Interestingly, both expression of AIM in lesions and its induction by oxidized lipids require the action of LXR/RXR heterodimers. AIM−/− macrophages are highly susceptible to oxLDL-induced apoptosis in vitro and undergo accelerated apoptosis in atherosclerotic lesions in vivo. Moreover, early atherosclerotic lesions in AIM−/−LDLR−/− double knockout mice are dramatically reduced when compared to AIM+/+LDLR−/− controls. We conclude that AIM production facilitates macrophage survival within atherosclerotic lesions and that loss of AIM decreases early lesion development by increasing macrophage apoptosis.  相似文献   

18.
Oxidized low-density lipoproteins (oxLDL) play a critical role in atherogenesis. We investigated the apoptotic process in human monocytic THP-1 cell line, exposed to oxLDL generated by treatment of native LDL either with hypochlorous acid (HOCl), mainly affecting the protein moiety, or with copper sulfate (CuSO(4)), mainly affecting the lipid moiety. After incubation with both types of oxLDL, we observed: (i) microscopy signs of apoptosis in THP-1 cells, (ii) a significant increase of apoptotic cells proportional to LDL protein concentration, either by annexin V or by cell cycle phase analysis with propodium iodide flow cytometry, (iii) a reduction of THP-1 cell apoptosis in presence of the caspase inhibitor Z-VAD.fmk, (iv) the resistance of THP-1 cells apoptosis after PMA-elicited differentiation. In conclusion, HOCl-oxLDL are as potent as Cu-oxLDL to induce high rates of apoptosis in monocytes through a caspase-dependent pathway. Moreover, the resistance of differentiated THP-1 cells to oxLDL-induced apoptosis is compatible with the hypothesis that mature macrophages have prolonged survival and thereby enhance the atherogenic process.  相似文献   

19.
20.
Oxidized LDL (oxLDL) is known to induce endothelial adhesion molecule and monocyte chemoattractant protein 1 expression and this is thought to be involved in monocyte recruitment into atherosclerotic lesions. oxLDL has also been found to induce macrophage proliferation. The purpose of the present study was to determine whether oxLDL might also have the ability to increase macrophage populations by inhibiting apoptosis. We found that oxLDL caused a dose-dependent inhibition of the apoptosis that occurs in cultured bone marrow-derived macrophages after macrophage colony-stimulating factor (M-CSF) withdrawal without inducing proliferation. Incubation of macrophages with either native LDL or acetylated LDL had no effect on apoptosis. The prosurvival effect of oxLDL was not inhibited by neutralizing antibodies to granulocyte-macrophage colony-stimulating factor, was maintained in mice homozygous for a mutation in the M-CSF gene, and was not due to other secreted cytokines or growth factors. oxLDL caused activation of the mitogen-activated protein kinases ERK1/2 (extracellular signal-regulated kinases 1 and 2) as well as protein kinase B (PKB), a target of phosphatidylinositol 3-kinase (PI 3-kinase). Furthermore, there was phosphorylation of two important prosurvival PKB targets, I-kappaBalpha(Ser-32) and Bad(Ser-136). The MEK inhibitors PD 98059 and U0126 blocked ERK1/2 activation but did not diminish survival. Conversely, the PI 3-kinase inhibitors LY 294002 and wortmannin blocked PKB activation, and the ability of oxidized LDL to promote macrophage survival.Taken together, these results indicate that oxLDL can directly activate a PI 3-kinase/PKB-dependent pathway that permits macrophage survival in the absence of growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号