首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study aimed to investigate the differentiation of chicken (Gallus gallus domesticus) primordial germ cells (PGCs) in duck (Anas domesticus) gonads. Chimeric ducks were produced by transferring chicken PGCs into duck embryos. Transfer of 200 and 400 PGCs resulted in the detection of a total number of 63.0 ± 54.3 and 116.8 ± 47.1 chicken PGCs in the gonads of 7-day-old duck embryos, respectively. The chimeric rate of ducks prior to hatching was 52.9% and 90.9%, respectively. Chicken germ cells were assessed in the gonad of chimeric ducks with chicken-specific DNA probes. Chicken spermatogonia were detected in the seminiferous tubules of duck testis. Chicken oogonia, primitive and primary follicles, and chicken-derived oocytes were also found in the ovaries of chimeric ducks, indicating that chicken PGCs are able to migrate, proliferate, and differentiate in duck ovaries and participate in the progression of duck ovarian folliculogenesis. Chicken DNA was detected using PCR from the semen of chimeric ducks. A total number of 1057 chicken eggs were laid by Barred Rock hens after they were inseminated with chimeric duck semen, of which four chicken offspring hatched and one chicken embryo did not hatch. Female chimeric ducks were inseminated with chicken semen; however, no fertile eggs were obtained. In conclusion, these results demonstrated that chicken PGCs could interact with duck germinal epithelium and complete spermatogenesis and eventually give rise to functional sperm. The PGC-mediated germline chimera technology may provide a novel system for conserving endangered avian species.  相似文献   

2.
The present study was carried out to investigate development of recipient chicken embryonic reproductive tracts which are transferred chicken primordial germ cells (PGCs). It is thought that differentiation of PGCs is affected by the gonadal somatic cells. When female PGCs are transferred to male embryos, it is possible that they differentiate to W-spermatogonia. However, the relationship development between PGCs and gonads has not been investigated. At stage 12–15 of incubation of fertilized eggs, donor PGCs, which were taken from the blood vessels of donor embryos, were injected into the blood vessels of recipient embryos. The gonads were removed from embryos that died after 16 days of incubation and from newly hatched chickens and organs were examined for morphological and histological features. The survival rate of the treated embryos was 13.6% for homo-sexual transfer of PGCs (male PGCs to male embryo or female PGCs to female embryo) and 28.9% for hetero-sexual transfer PGCs (male PGCs to female embryo or female PGCs to male embryo) when determined at 15 days of incubation. The gonads of embryos arising from homo-sexual transfer appeared to develop normally. In contrast, embryos derived from hetero-sexual transfer of PGCs had abnormal gonads as assessed by histological observation. These results suggest that hetero-sexual transfer of PGCs may influence gonadal development early-stage embryos.  相似文献   

3.
Primordial germ cells (PGCs), collected from the blood of 2-day-old chick embryos, were concentrated by Ficoll density centrifugation. The blood contained 0.048% PGCs and the concentrated fraction contained 3.9% PGCs in blood cells. The PGCs were picked up with a fine glass pipette, and one hundred were then injected into the terminal sinuses of 2-day-old Japanese quail embryos (24 somites); bubbles were then inserted to prevent haemorrhage. The embryos were further incubated at 38 degrees C for 24 h, and then fixed. Serial sections were stained with the periodic acid-Schiff reagent (PAS) to demonstrate chicken PGCs and with Feulgen stain to identify quail cells. On the basis of the differences in staining properties, 63.6 +/- 5.3 chick PGCs were detected in the quail embryo in the area where the gonads develop. Furthermore, 39.3 +/- 4.5 chick PGCs were incorporated into the quail germinal epithelium within 24 h of the injection. A similar percentage of the host (quail) PGCs had also migrated to the germinal epithelium at the same stage of development. This technique for obtaining germ-line chimaeras will facilitate research on avian germ-line differentiation.  相似文献   

4.
Immunomagnetic cell sorting (MACS) with the monoclonal antibody (mAb) QCR1 was compared with the Ficoll density-gradient centrifugation system (FICS) in terms of the efficiency of enrichment of quail (Coturnix japonica) primordial germ cells (PGCs) from blood. The purified PGCs were tested for their ability to settle in the chick (Gallus domesticus) embryonic gonad. Blood containing 60-100 PGCs microliter-1 was taken from the dorsal aorta of quail embryos at Hamburger and Hamilton's stages 14-16. The amount and concentration of PGCs in the PGC-rich fraction purified by MACS were greater than in the fraction purified by FICS. Purified quail PGCs were transfused into chick embryos at stages 14-16 and immunohistochemically stained with mAb QCRI on day 8 of chick development. Transfused PGCs purified by either MACS or FICS were positively stained in the chick embryonic gonads.  相似文献   

5.
Kim JN  Lee YM  Park TS  Jung JG  Cho BW  Lim JM  Han JY 《Theriogenology》2005,63(4):1038-1049
The developmental similarity between the chicken and pheasant (Phasianus colchicus) allows the novel biotechnologies developed in the chicken to be applied to the production of transgenic pheasants and interspecies germline chimeras. To detect pheasant primordial germ cells (PGCs) efficiently, which is important for inducing germline transmission, the ultrastructure of PGCs and their reactivity to several antibodies (2C9, QB2, anti-SSEA-1, and QCR1) and periodic acid-Schiff's solution (PAS) were examined. To obtain PGCs, blood was taken from embryos incubated for 62-72 h or from gonads from embryos incubated for 156-216 h. The PGCs collected from both sources had the typical ultrastructure of pluripotent cells: a large nucleus with a distinct nucleolus, a high ratio of nuclear to cytoplasmic volume, and a distinct cytoplasmic membrane. In comparing the morphology of PGCs collected from different sites, more mitochondria and better-developed membrane microvilli were found in gonadal PGCs than in circulating PGCs. The nucleus of gonadal PGCs was flattened and had a large eccentrically positioned nucleolus. Of the antibodies tested, only QCR1 antibody reacted with an epitope in pheasant PGCs, and no specific signal was detected to other antibodies. The temporal change in the PGC populations in the blood and gonads of embryos was examined. In blood, the population was greater (P < 0.0001) in embryos incubated for 64 h than in embryos incubated for 62 or 66-72 h (31.4 versus 5.6-16.2 microL(-1)). In embryonic gonads, the number of PGCs increased continuously from 156 to 216 h of incubation (193-2,718 cells/embryo), although the ratio of PGCs to total gonadal cells did not change significantly (0.50-0.61%). In conclusion, pheasant PGCs have typical germ cell morphology and possess the QCR1 epitope. Circulating blood and the gonads of embryos incubated for 64 and 216 h, respectively, are good sources of PGCs.  相似文献   

6.
The low density lipoprotein receptor-related protein 4 gene (Lrp4) was identified by subtractive screening of cDNAs of the migratory primordial germ cells (PGCs) of E8.5-9.5 embryo and E3.5 blastocysts. Lrp4 is expressed in PGCs in the hindgut and the dorsal mesentery of E9.5 embryos, and in germ cells in the genital ridges of male and female E10.5-13.5 embryos. Lrp4 is also expressed in spermatogonia of the neonatal and adult testes and in the immature oocytes and follicular cells of the adult ovary. The absence of Lrp4 expression in the blastocyst, embryonic stem cells and embryonic germ cells suggests the Lrp4 is a molecular marker that distinguishes the germ cells from embryo-derived pluripotent stem cells.  相似文献   

7.
The present study was conducted to apply an interspecies germ cell transfer technique to wild bird reproduction. Pheasant (Phasianus colchicus) primordial germ cells (PGCs) retrieved from the gonads of 7-day-old embryos were transferred to the bloodstream of 2.5-day-old chicken (Gallus gallus) embryos. Pheasant-to-chicken germline chimeras hatched from the recipient embryos, and 10 pheasants were derived from testcross reproduction of the male chimeras with female pheasants. Gonadal migration of the transferred PGCs, their involvement in spermatogenesis, and production of chimeric semen were confirmed. The phenotype of pheasant progenies derived from the interspecies transfer was identical to that of wild pheasants. The average efficiency of reproduction estimated from the percentage of pheasants to total progenies was 17.5%. In conclusion, interspecies germ cell transfer into a developing embryo can be used for wild bird reproduction, and this reproductive technology may be applicable in conserving endangered bird species.  相似文献   

8.
Chicken primordial germ cells (PGCs) collected from thecirculating blood in embryonic vessels at stage 13–15 were inter-embryonically, homo- or hetero-sexually,transferred to the blood vessels of recipient embryosat the same stage of development. Approximately 30%of the embryos treated with hetero-sexual transfer of PGCs had abnormal gonads, showing ovotestis likeorgans. In this case, some of these reversed gonadswere considered to be dependent upon the ratio of thenumber of PGCs from donor to recipient embryos. Oneof the treated embryos possessed completely reversedorgans. Therefore, the introduction of exogenousembryonic vessels was thought to be also useful forproducing transgened gonads.  相似文献   

9.
10.
Migratory mechanisms of chick primordial germ cells toward gonadal anlage.   总被引:6,自引:0,他引:6  
After appearing at the germinal crescent region, chick primordial germ cells (PGCs) migrate toward the presumptive gonads (pG) till stage 19 (Hamburger and Hamilton, 1951). This study seeks to elucidate the roles of passive and active factors in the PGC-migration, physical trapping of circulating PGCs by the capillary network and PGC attraction by chemotactic factor from presumptive gonads. Firstly, latex beads/pollens (the same size or larger than PGCs) were injected into the embryonic bloodstream at stage 13-19 (when PGCs are in the migrating and settlement phase to the presumptive gonad) in ovo in order to determine whether the PGCs passively reach pG. Most of such particles accumulated in the head region (60%), whereas the remainder did the same in the gonadal region (23% at the peak) at stage 16 when both the head and gonadal regions are rich in capillary plexus. After 3 days, most particles in the gonadal region were located at the angles of dorsal mesentery near the developing gonads where many extra-gonadal PGCs had been located, and a few particles were detected close to the gonad. These results suggest that one of the mechanisms of PGC-migration to the developing gonads is an autonomous trapping of PGCs by the capillary network quite close to the germinal epithelium (GE) and passive translocation by morphogenetic movement. Secondly, the attraction for PGCs by the gonadal anlage proper was examined in ovo using chick and quail embryos. Grafts of quail gonadal anlage containing gonadal epithelium and neighbouring mesenchymal tissue were excised from the quail embryo at stages 12 to 16 (staging by Zacchei, 1961). With the aims of eliminating the influence of surrounding tissue, the quail graft was ectopically transplanted into the posterior to the optic vesicle of 8 to 17 somite chick embryo from the point of a posterior region to the auditory vesicle by a fine tungsten needle under the illumination by the method of Hara (1971). Then the region posterior to the level of presumptive vitelline arteries was surgically excised in ovo. After a 48 hrs.-incubation, the host PGCs which lost their own gonadal anlage as a target organ accumulated in the transplanted quail gonadal anlage originating from the embryo at PGC-migrating periods. This result strongly suggested the presence of some attractive factor that may be emitted from the gonadal anlage proper. Furthermore, it was demonstrated that the PGCs in vitro showed no contact inhibition in relation to other PGCs or fibroblasts in their moving pathway.  相似文献   

11.
Primordial germ cells (PGCs) from stage 27 (5.5-day-old) Korean native ogol chicken embryonic germinal ridges were cultured in vitro for 5 days. As in in vivo culture, these cultured PGCs were expected to have already passed beyond the migration stage. Approximately 200 of these PGCs were transferred into 2.5-day-old white leghorn embryonic blood stream, and then the recipient embryos were incubated until hatching. The rate of hatching was 58.8% in the manipulated eggs. Six out of 60 recipients were identified as germline chimeric chickens by their feather colour. The frequency of germline transmission of donor PGCs was 1.3–3.1% regardless of sex. The stage 27 PGCs will be very useful for collecting large numbers of PGCs, handling of exogenous DNA transfection during culture, and for the production of desired transgenic chickens.  相似文献   

12.
Blood was collected from Stage 13 to 14 (1) chick embryos. Primordial germ cells (PGCs) were separated from blood cells by Ficoll density gradient centrifugation. One hundred Rhode Island Red PGCs per embryo were transferred to the blood stream of Stage 14 to 15 White Leghorn embryos. Also, one hundred White Leghorn PGCs per embryo were transferred to the blood stream of Stage 14 to 15 Rhode Island Red embryos. Hatched male and female chicks were raised until sexual maturity, and progeny tests were performed by mating these PGC recipients with Rhode Island Red chickens of the opposite sex. Chicks apparently derived from the transferred PGCs, based on the feather color of the chicks, were produced from all 4 possible mating combinations. The present results indicate that the germ line of PGC recipient chickens consists of 2 distinct populations of germ cells.  相似文献   

13.
为获得鸡原始生殖细胞(primordial germ cells,PGCs)的最佳转染效率,本研究比较不同质粒用量和不同细胞数在3种转染试剂(Lipofectamine 2000、3000和LTX&Plus Reagent)中PGCs的转染效率,利用荧光激活细胞分选技术(fluorescence activated cell sorting technology,FACS)辅助优化Lipofectamine 3000转染试剂,经FACS进一步分选获得带绿色荧光蛋白(GFP)的PGCs,继续培养3周后,移植回注到受体鸡胚中,移植3.5 d后分离性腺拍照观察。结果显示,转染试剂Lipofectamine 3000的转染效率最高,质粒、Lipofectamine 3000转染试剂和PGCs细胞数的配比为3μg:4μL:0.5×104个,转染5 h转染效率最高,达到23.4%,与现有的研究结果相比提高了2倍以上。移植回注PGCs到受体鸡胚中,荧光显微镜观察到鸡胚性腺中有GFP阳性细胞。本研究综合考虑转染试剂、质粒用量和细胞数量的影响因素以优化PGCs的转染条件,为高效制备转基因鸡及基因编辑鸡的研究奠定基础。  相似文献   

14.
This study was conducted to evaluate whether the sex of donor primordial germ cells (PGCs) influences production of chimeric semen from recipient hatchlings produced by interspecies transfer between pheasant (Phasianus colchicus) and chicken (Gallus gallus). Pheasant PGCs were retrieved from 7-d-old embryos and subsequently transferred into circulatory blood of 2.5-d-old (Stage 17) embryos. The sex of embryos was discerned 3 to 6 days after laying, and in preliminary study, overall rate of embryo survival after sexing was 74.6% with male-to-female ratio of 0.49 to 0.51. In Experiment 1, magnetic-activated cell sorting (MACS) using QCR1 antibody was effective for enriching the population of male and female PGCs in gonadal cells (9.2- to 12.5-fold and 10.8- to 19.5-fold increase, respectively). In Experiment 2, an increase in the number of hatchlings producing chimeric semen was detected after the homosexual transfer of male-to-male compared with that after the heterosexual transfer of female-to-male (68% to 88%). Significant increase was found in the frequency of chimeric semen production (0.96 to 1.68 times); production of pheasant progenies by artificial insemination using chimeric semen was also increased in the homosexual transfer (0 to 3 cases). In conclusion, the homosexual PGC transfer of male-to-male yielded better rate of generating pheasant progenies after test cross-reproduction than that of the heterosexual transfer of female-to-male, which could improve the efficiency of interspecies germ cell transfer system.  相似文献   

15.
16.
In our previous studies, we demonstrated that female primordial germ cells (PGCs) have the ability to differentiate into W chromosome-bearing (W-bearing) spermatozoa in male gonads of germline chimeric chickens. In this study, to investigate the differentiation pattern of female PGCs in male gonads in chickens, three germline chimeric chickens were generated by injecting female PGCs into the male recipient embryos. After these male chimeras reached sexual maturity, the semen samples were analyzed for detecting W-bearing cells by PCR and in situ hybridization analyses. The results indicated that the female PGCs had settled and differentiated in their testes. A histological analysis of the seminiferous tubule in those chimeras demonstrated that the W-bearing spermatogonia, spermatocytes, and round spermatids accounted for 30.8%, 32.7%, and 28.4%, respectively. However, the W-bearing elongating spermatid was markedly lower (7.7%) as compared to the W-bearing round spermatid. The W-bearing spermatozoa were hardly ever observed (0.2%). We concluded that although female PGCs in male gonads are capable of passing through the first and second meiotic division in adapting themselves to a male environment, they are hardly complete spermiogenesis.  相似文献   

17.
Using fluorescence-activated cell sorting combined with fluorescence microscopy the mechanism of embryonic germ cell death in the mouse has been shown to be apoptosis. Primordial germ cells (PGCs) from embryos at specific developmental stages have been analyzed, and cells with apoptotic morphology have been isolated by cell sorting. In the female, apoptotic oogonia at Day 13 and apoptotic oocytes at Days 15 and 17 were found. In the male, apoptotic cells were seen on Day 13 through Day 17. Apoptotic germ cells were not detected at Day 12 (combined male and female PGCs). Examination of sorted cells by fluorescence microscopy and by light microscopic analysis after alkaline phosphatase staining confirmed that the cells are apoptotic germ cells. Electron microscopy further confirmed that cells showing the morphological characteristics of apoptosis are present.  相似文献   

18.
Kang SJ  Sohn SH  Kang KS  Lee HC  Lee SK  Choi JW  Han JY 《Theriogenology》2011,75(4):696-706
Interspecific hybrids provide insights into fundamental genetic principles, and may prove useful for biotechnological applications and as tools for the conservation of endangered species. In the present study, interspecies hybrids were generated between the Korean ring-necked pheasant (Phasianus colchicus) and the White Leghorn chicken (Gallus gallus domesticus). We determined whether these hybrids were good recipients for the production of germline chimeric birds. PCR-based species-specific amplification and karyotype analyses showed that the hybrids inherited genetic material from both parents. Evaluation of biological function indicated that the growth rates of hybrids during the exponential phase (body weight/week) were similar to those of the pheasant but not the chicken, and that the incubation period for hatching was significantly different from that of both parents. Primordial germ cells (PGCs) of hybrids reacted with a pheasant PGC-specific antibody and circulated normally in blood vessels. The peak time of hybrid PGC migration was equivalent to that of the pheasant. In late embryonic stages, germ cells were detected by the QCR1 antibody on 15 d male gonads and were normally localized in the seminiferous cords. We examined the migration ability and developmental localization of exogenous PGCs transferred into the blood vessels of 63 h hybrid embryos. Donor-derived PGCs reacted with a donor-specific antibody were detected on 7 d gonads and the seminiferous tubules of hatchlings. Therefore, germ cell transfer into developing embryos of an interspecies hybrid can be efficiently used for the conservation of threatened animals and endangered species, and many biotechnological applications.  相似文献   

19.
影响鸡原始生殖细胞分离克隆因素的研究(简报)   总被引:1,自引:0,他引:1  
具有多向分化潜能的胚胎干细胞有两种来源:一是来自于早期胚胎内细胞团的胚胎干细胞(Em.bryonic Stem Cells,ESCs),另一种是来自于胚胎生殖腺原始生殖细胞(Primordial Germ Cells,PGCs)的胚胎生殖细胞(Embryonic Germ Cells,EGCs)。  相似文献   

20.
Derivation and characterization of pluripotent embryonic germ cells in chicken   总被引:24,自引:0,他引:24  
Embryonic germ (EG) cell lines established from primordial germ cells (PGCs) are undifferentiated and pluripotent stem cells. To date, EG cells with proven germ-line transmission have been completely established only in the mouse with embryonic stem (ES) cells. We isolated PGCs from 5.5-day-old (stage 28) chicken embryonic gonads and established a putative chicken EG cell line with EG culture medium supplemented with stem cell factor (SCF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), interleukin-11 (IL-11), and insulin-like growth factor-I (IGF-I). These cells grew continuously for ten passages (4 months) on a feeder layer of mitotically active chicken embryonic fibroblasts. After several passages, these cells were characterized by screening with the periodic acid-Schiff reaction, anti-SSEA-1 antibody, and a proliferation assay. The chicken EG cells maintained characteristics of gonadal PGCs and undifferentiated stem cells. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types. The chicken EG cells were injected into stage X blastodermal layer and produced chimeric chickens with various differentiated tissues derived from the EG cells. Chicken EG cells will be useful for the production of transgenic chickens and for studies of germ cell differentiation and genomic imprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号