首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
This study explored the potential for expression pattern of genes encoding zinc (Zn) transporters to be involved in the cadmium (Cd)-induced reproductive toxicity in female of zebrafish. For this purpose, oocytes maturity and ovarian histology as well as Cd, Zn and metallothioneins (MTs) accumulation and expression of genes encoding Zrt-,Irt-related protein 10 (ZIP10), Zn transporter 1 (ZnT1) and zebrafish metallothionein (zMT) were examined in ovaries of adult zebrafish exposed to 0.4 mg/L Cd in water and supplemented with Zn (5 mg kg−1) in their diet for 21 days. Cd-exposure decreased the expression of ZnT1 and caused up-regulation of ZIP10 and zMT gene expression. These changes were accompanied by increased Cd and MTs accumulation, decreased Zn contents as well as by histopathological damages in ovarian tissues. The co-exposure of fish to Cd and Zn abolished ZnT1 down-regulation and rendered a persistently increased ZIP10 mRNA level. This treatment also decreased Cd and MTs accumulation, reversed Cd-induced Zn depletion and partially restored Cd-induced histological changes in ovarian tissues. These results imply that the downregulation of ZnT1 as well as the overexpression of ZIP10, in responses to the ovarian Zn depletion induced by Cd, play a major role in Cd accumulation and consequently in its toxicity. The protective effect of dietary Zn supplementation against Cd-induced toxicity is mediated, at least in part, by the increase of Zn availability and subsequently the induction of ZnT1 gene expression.  相似文献   

2.
The present study was conducted to investigate whether the combined treatment with Se and Zn offers more beneficial effects than that provided by either of them alone in reversing Cd-induced oxidative stress in the kidney of rat. For this purpose, 30 adult male Wistar albino rats, equally divided into control and four treated groups, received either 200 ppm Cd (as CdCl2), 200 ppm Cd + 500 ppm Zn (as ZnCl2), 200 ppm Cd + 0.1 ppm Se (as Na2SeO3), or 200 ppm Cd + 500 ppm Zn + 0.1 ppm Se in their drinking water for 35 days. The results showed that Cd treatment decreased significantly the catalase (CAT) and glutathione peroxidase (GSH-Px) activities, whereas the superoxide dismutase (SOD) activity and the renal levels of lipid peroxidation (as malondialdehyde, MDA) were increased compared to control rats. The treatment of Cd-exposed rats with Se alone had no significant effect on the Cd-induced increase in the MDA concentrations but increased significantly the CAT activities and reversed Cd-induced increase in SOD activity. It also partially prevented Cd-induced decrease in GSH-Px activity. The treatment of Cd-exposed animals with Zn alone increased significantly the CAT activity and partially protected against Cd-induced increase in the MDA concentrations, whereas it had no significant effect on the Cd-induced increase in SOD activity and decrease in GSH-Px activity. The combined treatment of Cd-exposed animals with Se and Zn was more effective than that with either of them alone in reversing Cd-induced decrease in CAT and GSH-Px activities and Cd-induced increase in MDA concentrations. Results demonstrated beneficial effects of combined Se and Zn treatment in Cd-induced oxidative stress in kidney and suggest that Se and Zn can have a synergistic role against Cd toxicity. I. Messaoudi and J. El Heni have equally contributed to this work.  相似文献   

3.
The paper reports the effects of selenium (Se) supply on growth and antioxidant traits of wheat (Triticum aestivum L. cv Han NO.7086) seedlings exposed to enhanced ultraviolet-B (UV-B) stress. Antioxidant responses of seedlings were different depending on the Se concentration. Compared with the control, the lower amount used (0.5 mg Se kg−1 soil) had no significant effect on biomass accumulation. The treatments with 1.0, 2.0, and 3.0 mg Se kg−1 promoted biomass accumulation of wheat seedlings, and the increased amount in biomass was the most at 1.0 mg Se kg−1 treatment. Se treatments with 1.0, 2.0, and 3.0 mg kg−1 also significantly increased activities of peroxidase (POD) and superoxide dismutase (SOD) and reduced the rate of superoxide radical (O2) production and malondialdehyde (MDA) content of wheat seedlings. In addition, anthocyanins and phenolic compounds content in wheat seedlings evidently increased by the treatments with 1.0 and 2.0 mg Se kg−1. The lower Se treatment had no significant effect on MDA content, although it increased activities of antioxidant enzymes (POD, SOD, and catalase activities) and reduced the rate of O2 production in wheat seedlings. These results suggest that optimal Se supply is favorable for the growth of wheat seedlings and that optimal Se supply can reduce oxidative stress of seedlings under enhanced UV-B radiation.  相似文献   

4.
Effects of Selenium on Wheat Seedlings Under Drought Stress   总被引:3,自引:0,他引:3  
The paper reports the effects of selenium (Se) supply on growth and some physiological traits of wheat (Triticum aestivum L. cv Shijiazhuang NO. 8) seedlings exposed to drought stress. The growth and physiological responses of seedlings were different depending on the Se concentration. The higher (3.0 mg Se kg−1) and lower amount used (0.5 mg Se kg−1) did not significantly affect on biomass accumulation. Treatments with 1.0 and 2.0 mg Se kg−1 promoted biomass accumulation of wheat seedlings. Treatments at 1.0, 2.0, and 3.0 mg Se kg−1 significantly increased root activity, proline content, peroxidase (POD), and catalase (CAT) activities, carotenoids (Car) content, chlorophyll content, and reduced malondialdehyde (MDA) content of wheat seedlings. Lower Se treatment did not significantly effect on chlorophyll content and MDA content, although it also increased some antioxidant index (proline and Car content, POD and CAT activities) in wheat seedlings. These results suggest that optimal Se supply is favorable for growth of wheat seedlings during drought condition.  相似文献   

5.
Selenium (Se) is an important dietary micronutrient with antioxidative roles. Cadmium (Cd), a ubiquitous environmental pollutant, is known to cause brain lesion in rats and humans. However, little is reported about the deleterious effects of subchronic Cd exposure on the brain of poultry and the protective roles on the brain by Se against Cd. The aim of this study was to investigate the protective effects of Se on Cd-induced brain damage in chickens. One hundred twenty 100-day-old chickens were randomly assigned to four groups and were fed a basal diet, or Se (as 10 mg Na2SeO3/kg dry weight of feed), Cd (as 150 mg CdCl2/kg dry weight of feed), or Cd?+?Se in their basic diets for 60 days. Then, concentrations of Cd and Se, production of nitric oxide (NO), messenger RNA (mRNA) level and activity of inducible NO synthase (iNOS), level of oxidative stress, and histological and ultrastructural changes of the cerebrum and cerebellum were examined. The results showed that Cd exposure significantly increased Cd accumulation, NO production, iNOS activities, iNOS mRNA level, and MDA content in the cerebrum and cerebellum. Cd treatment obviously decreased Se content and antioxidase activities and caused histopathological changes in the cerebrum and cerebellum. Se supplementation during dietary Cd obviously reduced Cd accumulation, NO production, mRNA level and activity of iNOS, oxidative stress, and histopathological damage in the cerebrum and cerebellum of chickens. It indicated that Se ameliorates Cd-induced brain damage in chickens by regulating iNOS-NO system changes, and oxidative stress induced by Cd and Se can serve as a potential therapeutic for Cd-induced brain lesion of chickens.  相似文献   

6.
Iron nutrition affects cadmium accumulation and toxicity in rice plants   总被引:12,自引:0,他引:12  
The effect of iron (Fe) nutrition on cadmium (Cd) toxicity and accumulation in rice plants was studied using a hydroponic system. The inhibitory effect of Cd on plant growth and chlorophyll content (SPAD value) was dependent on Fe level and the genotype. Malondialdehyde (MDA) content in leaves and roots was not much affected by an increased Cd stress at 0.171 mg l−1 Fe, but it showed a rapid increase when the plants were exposed to moderate (1.89 mg l−1) and high (16.8 mg l−1) Fe levels. High Fe nutrition caused a marked reduction in Cd content in both leaves and roots. Fe content in plants was lower at high Cd (5.0 μM) stress than at low Cd (<1.0 μM) stress. Cd stress increased both superoxide dismutase (SOD) and peroxidase (POD) activities at low and moderate Fe levels. However, with high Fe level, it increased the POD activity, but reduced the SOD activity. Our results substantiate the hypothesis that cell membrane-bound iron transporter (carrier) involved in high-affinity iron transport systems can also transport Cd, and both these ions may compete for this common carrier. The study further showed that there were significant correlations between MDA and Fe contents in leaves and roots of rice plants. It is suggested that the occurrence of oxidative stress in plants exposed to Cd stress is mediated by Fe nutrition. The present results also show that Cd stress affects the uptake of Cu and Zn.  相似文献   

7.
The present study has been carried out to investigate the protective role of taurine against cadmium (Cd)-induced oxidative impairment in murine liver. Oral administration of cadmium chloride (CdCl2) at a dose of 4 mg/kg body weight for 6 days increased the accumulation of the Cd in the liver and diminished the liver weight to body weight ratio. The CdCl2 altered the levels of intracellular trace elements, cofactors of various metalloenzymes and increased the activities of serum marker enzymes related to liver dysfunction. In addition, Cd intoxication also attenuated intracellular antioxidant power, the activities of antioxidant enzymes as well as the levels of cellular metabolites. Moreover, level of hepatic metallothionein, lipid peroxidation, protein carbonylation, DNA fragmentation, concentration of intracellular reactive oxygen species (ROS) and the activities of cytochrome P450s have been increased due to Cd toxicity. In addition to the oxidative impairments, Cd exposure caused hepatic cell death mainly via the necrotic pathway. Oral administration of taurine at a dose of 100 mg/kg body weight for 5 days prior to CdCl2 intoxication prevented the alterations of all the toxic-induced hepatic damages. Histological studies also supported the beneficial role of taurine against Cd-induced hepatic damages. Combining all, results suggest that taurine could protect hepatic tissues against Cd-induced oxidative stress probably through its antioxidant activity.  相似文献   

8.
Three hundred sixty healthy Ross×Ross 1-day-old broilers were used to study the effects of zinc glycine chelate (Zn-Gly) on growth performance, hematological, and immunological characteristics. All broilers were randomly assigned into six treatments. Diets were as follows: (1) control (containing 29.3 mg Zn kg−1 basic diet [0–3 weeks] and 27.8 mg Zn kg−1 [4–6 weeks]); (2) basic diet plus 30 mg Zn kg−1 from Zn-Gly; (3) basic diet plus 60 mg Zn kg−1 from Zn-Gly; (4) basic diet plus 90 mg Zn kg−1 from Zn-Gly; (5) basic diet plus 120 mg Zn kg−1 from Zn-Gly; (6) positive control, basic diet plus 120 mg Zn kg−1 from zinc sulfate (ZnSO4). After the 21- and 42-day feeding trials, the results showed that both of Zn-Gly and ZnSO4 could improve the growth performance of broilers, with the greatest average daily feed intake observed in the broilers fed 90 mg Zn kg−1 from Zn-Gly, but the greatest average daily gain observed with 120 mg Zn kg−1 from Zn-Gly (0–3 weeks) and 90 mg Zn kg−1 from Zn-Gly (4–6 weeks). Adding additional Zn-Gly improved the levels of immunoglobulins (IgA, IgM, and IgG) and the contents of total protein and Ca in serum and increased the immune organs index especially with 90 mg Zn kg−1 as Zn-Gly. However, there were no significant differences in responses to complements (C3 and C4) and albumin in serum among the treatments.  相似文献   

9.
Effects of selenium (Se) on growth and some physiological traits of roots in wheat (Triticum aestivum L. cv Han NO.7086) seedlings exposed to enhanced ultraviolet-B (UV-B) stress are reported. Responses of roots were different depending on the Se concentration. Compared with the control, root weight of wheat seedlings treated with 1.0 and 2.0 mg Se kg−1 soil increased by 39.47% and 16.28%, respectively. The lower amount Se (0.5 mg kg−1) and the higher amount Se treatments (3.0 mg kg−1) did not significantly affect on root weight. Se treatments significantly increased root activity, flavonoids and proline content, and activities of peroxidase and superoxide dimutase in wheat roots exposed to enhanced UV-B. In addition, the treatments with 0.5, 1.0, and 2.0 mg Se kg−1 significantly reduced malondialdehyde content and the rate of superoxide radical (O2) production of roots, whereas the higher amount Se treatment only induced a decrease in the rate of O2 production. The results of this study demonstrated that optimal Se supply promoted roots growth of wheat seedlings, and that optimal Se supply could reduce oxidative stress in wheat roots under enhanced UV-B radiation.  相似文献   

10.
Effects of arbuscular mycorrhizal fungus (Glomus mosseae) on the accumulation and speciation of selenium (Se) in alfalfa, maize, and soybean were investigated by using Se(IV)-spiked soil. Mycorrhizal inoculation decreased Se accumulation in roots and shoots of all the plants at Se spiked level of 0 or 2 mg kg−1, while an increased Se accumulation was observed in alfalfa shoots and maize roots and shoots at the spiked level of 20 mg kg−1. Concentration of inorganic Se (especially Se(VI)) in roots and shoots of the three plants was much higher in mycorrhizal than non-mycorrhizal treatment. Mycorrhizal inoculation decreased the portion of total organic Se in plant tissues with the exception of alfalfa and maize shoots at Se spiked level of 20 mg kg−1, in which organic Se portion did not reduced greatly (<5%) for mycorrhizal treatment. Mycorrhizal effects on alfalfa and maize were more obvious than on soybean in terms of root colonization rate, biomass, and Se accumulation.  相似文献   

11.
A greenhouse hydroponic experiment was performed using Cd-sensitive (cv. Dong 17) and Cd-tolerant (Weisuobuzhi) barley seedlings to evaluate how different genotypes responded to cadmium (Cd) toxicity in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. Results showed that 5 μM Cd increased the accumulation of O2•−, H2O2, and malondialdehyde (MDA) but reduced plant height, chlorophyll content, net photosynthetic rate (P n), and biomass, with a much more severe response in the Cd-sensitive genotype. Antioxidant enzyme activities increased significantly under Cd stress in the roots of the tolerant genotype, whereas in leaves of the sensitive genotype, superoxide dismutase (SOD) and ascorbate peroxide (APX), especially cytosol ascorbate peroxidase (cAPX), decreased after 5–15 days Cd exposure. Moreover, Cd induces NO synthesis by stimulating nitrate reductase and nitric oxide synthetase-like enzymes in roots/leaves. A Cd-induced NO transient increase in roots of the Cd-tolerant genotype might partly contribute to its Cd tolerance. Exogenous NO dramatically alleviated Cd toxicity, markedly diminished Cd-induced reactive oxygen species (ROS) and MDA accumulation, ameliorated Cd-induced damage to leaf/root ultrastructure, and increased chlorophyll content and P n. External NO counteracted the pattern of alterations in certain antioxidant enzymes induced by Cd; for example, it significantly elevated the depressed SOD, APX, and catalase (CAT) activities in the Cd-sensitive genotype after 10- and 15-day treatments. Furthermore, NO significantly increased stromal APX and Mn-SOD activities in both genotypes and upregulated Cd-induced decrease in cAPX activity and gene expression of root/leaf cAPX and leaf CAT1 in the Cd-sensitive genotype. These data suggest that under Cd stress, NO, as a potent antioxidant, protects barley seedlings against oxidative damage by directly and indirectly scavenging ROS and helps to maintain stability and integrity of the subcellular structure.  相似文献   

12.
Responses of Wheat Seedlings to Exogenous Selenium Supply Under Cold Stress   总被引:2,自引:0,他引:2  
Dose-dependent effects of selenium on growth and physiological trait of wheat seedlings (Triticum aestivum L. cv Han NO.7086) exposed to cold stress are reported. Responses of seedlings were different depending on the Se concentration. The treatments with 0.5 and 1.0 mg Se kg−1 significantly increased biomass and chlorophyll content of seedlings. However, the treatments at 2.0 and 3.0 mg Se kg−1 only induced an evident increase in chlorophyll content and did not promote biomass accumulation of seedlings. Antioxidant compounds content (anthocyanins, flavonoids, and phenolic compounds) and antioxidant enzymes’ activities (peroxidase and catalase) increased by different Se treatments, while only the treatment with 1.0 mg Se kg−1 induced a significant reduce in malondialdehyde content and the rate of superoxide radical production of wheat seedlings. The results of this study demonstrated that Se supply could increase antioxidant capacity of seedlings, and optimal Se supply reduced production of free radicals, membrane lipid peroxidation, and promoted biomass accumulation.  相似文献   

13.
14.
Cadmium (Cd) is an ubiquitous environmental pollutant that has been associated with male reproductive toxicity in animal models. However, little is known about the reproductive toxicity of Cd in birds. To investigate the toxicity of Cd on male reproduction in birds and the protective effects of selenium (Se) against subchronic exposure to dietary Cd, 100-day-old cocks received either Se (as 10 mg Na2SeO3 per kg of diet), Cd (as 150 mg CdCl2 per kg of diet) or Cd + Se in their diets for 60 days. Histological and ultrastructural changes in the testis, the concentrations of Cd and Se, amount of lipid peroxidation (LPO), the activities of the antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPx), and apoptosis and serum testosterone levels were determined. Exposure to Cd significantly lowered SOD and GPx activity, Se content in the testicular tissue, and serum testosterone levels. It increased the amount of LPO, the numbers of apoptotic cells and Cd concentration and caused obvious histopathological changes in the testes. Concurrent treatment with Se reduced the Cd-induced histopathological changes in the testis, oxidative stress, endocrine disorder and apoptosis, suggesting that the toxic effects of cadmium on the testes is ameliorated by Se. Se supplementation also modified the distribution of Cd in the testis.  相似文献   

15.
Despite the well-established toxicity of cadmium (Cd) to animals and the ameliorative effects of selenium (Se), some specific mechanisms in the chicken ovary are not yet clarified. To explore the mechanism by which the toxicity effect of Cd is induced and explore the effect of supranutritional Se on Cd toxicity in female bird reproduction, forty-eight 50-day-old Isa Brown female chickens were divided randomly into four groups. Group I (control group) was fed the basic diet containing 0.2 mg/kg Se. Group II (Se-treated group) was fed the basic diet supplemented with sodium selenite (Na2SeO3), and the total Se content was 2 mg/kg. Group III (Se + Cd-treated group) was fed the basic diet supplemented with Na2SeO3; the total Se content was 2 mg/kg, and it was supplemented with 150 mg/kg cadmium chloride (CdCl2). Group IV (Cd-treated group) was with the basic diet supplemented with 150 mg/kg CdCl2. The Cd, estradiol (E2), and progestogen (P4) contents changed after subchronic Cd exposure in chicken ovarian tissue; subsequently, oxidative stress occurred and activated the endoplasmic reticulum (ER) pathway to induce apoptosis. Further, Se decreased the accumulation of Cd in ovarian tissue, increased the E2 and P4 contents, alleviated oxidative stress, and reduced apoptosis via the ER stress pathway. The present results demonstrated that Cd could induce apoptosis via the ER stress pathway in chicken ovarian tissue and that Se had a significant antagonistic effect. These results are potentially valuable for finding a strategy to prevent Cd poisoning.  相似文献   

16.
A hydroponic experiment was conducted to study the ameliorative effects of separate or combined application of exogenous glutathione (GSH), selenium (Se) and zinc (Zn) upon 20 μM cadmium (Cd) plus 20 μM chromium (Cr) heavy metal stress (HM) in rice seedlings. The results showed that HM caused a marked reduction in seedling height, chlorophyll content (SPAD) and biomass, and activities of catalase (CAT) and ascorbate peroxidase (APX) in leaves and H+-ATPase in roots/leaves, but elevated superoxide dismutase (SOD) and guaiacol peroxidase (POD) activities in leaves with elevated malondialdehyde (MDA) accumulation both in leaves and roots over the control. The best mitigation effect was recorded in HM+GSH+Zn and HM+GSH (addition of GSH+Zn and GSH to HM solution), which greatly alleviated HM-induced growth inhibition and oxidative stress. Compared with HM alone, HM+GSH and HM+GSH+Zn markedly reduced Cr uptake and translocation but not affected Cd concentration; improved H+-ATPase activity and Fe, Zn, Mn uptake and translocation, and repressed MDA accumulation. Meanwhile exogenous GSH and GSH+Zn counteracted HM-induced response of antioxidant enzymes, via suppressing HM-induced dramatic increase of root/leaf SOD and leaf POD activities, and elevating stress-depressed leaf APX and leaf/root CAT activities.  相似文献   

17.
Cadmium (Cd) exposure has been recognized to result in a wide variety of cellular responses, including oxidative stress and body weight loss. The aim of the present study was to examine the effect of lycopene supplementation on the antioxidant defense system, lipid peroxidation (LPO) level, nitric oxide (NO), tumor necrosis factor alpha (TNF-α) production, and body weight in Cd-exposed rats. Animals were divided into four groups (n = 7): control, Cd-treated, Cd plus lycopene-treated, and lycopene-treated. Cadmium (as CdCl2) was administrated orally for 20 days (6.6 mg kg−1 day−1), and lycopene (10 mg kg−1 day−1) was similarly administered. Lycopene administration significantly suppressed Cd-induced LPO in plasma and kidney homogenates. Lycopene also reversed Cd-decreased body weight compared to the control. Cadmium treatment had diverse effects on the antioxidant enzyme activities. Although antioxidant superoxide dismutase activity was unchanged, glutathione peroxidase activity was decreased, and catalase activity was elevated in kidney homogenates of Cd-administrated group. However, lycopene treatment reversed Cd-changed enzyme activities to the control level. Xanthine oxidase activity and TNF-α concentration were not altered by Cd administration, indicating that superoxide anion production and inflammation were not stimulated. Cadmium did not change NO levels in kidney homogenates but decreased those in plasma, and this effect was not prevented by lycopene supplementation. The result suggests that consumption of adequate levels of lycopene may be useful to prevent heavy-metal-induced LPO and body weight loss.  相似文献   

18.
In this study an experiment was carried out to study the process of stress adaptation in Groenlandia densa (opposite-leaved pondweed) grown under cadmium stress (0–20 mg L?1 Cd). The results showed that Cd concentrations in plants increased with increasing Cd supply levels and reached a maximum of 0.43 mg kg?1 DW at 0.5 mg L?1 Cd concentrations. The level of photosynthetic pigments and soluble proteins decreased only upon exposure to high Cd concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Cd concentration. These results suggested an alleviation of stress that was presumably the result of by antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione S-transferase (GST) as well as ascorbate peroxidase (APX), which increased linearly with increasing Cd levels. Cellular antioxidants levels showed a decline suggesting a defensive mechanism to protect against oxidative stress caused by Cd. In addition, the proline content in G. densa increased with increasing cadmium levels. These findings suggest that G. densa is equipped with an efficient antioxidant mechanism against Cd-induced oxidative stress which protects the plant's photosynthetic machinery from damage.Our present work concluded that G. densa has a high level of Cd tolerance and accumulation. We also found that moderate Cd treatment (0.05–5 mg L?1 Cd) alleviated oxidative stress in plants, while the addition of higher amounts of Cd (10–20 mg L?1) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

19.
Since there are no data about the protective role of selenium (Se) against cadmium (Cd)-induced oxidative damage in early life, we studied the effect of Se supplementation on antioxidative enzyme activity and lipid peroxidation (through thiobarbituric acid reactive substances; TBARS) in suckling Wistar rats exposed to Cd. Treated animals received either Se alone for 9 days (8 μmol, i.e., 0.6 mg Se as Na2SeO3 kg−1 b.w., daily, orally; Se group), Cd alone for 5 days (8 μmol, i.e., 0.9 mg Cd as CdCl2 kg−1 b.w., daily, orally; Cd group), or pre-treatment with Se for 4 days and then co-treatment with Cd for the following 5 days (Se + Cd group). Our results showed that selenium supplementation, with and without Cd, increased SOD activity in the brain and kidney, but not in the liver and GSH-Px activity across all tissues compared to control rats receiving distilled water. Relative to the Cd group, Se + Cd group had higher kidney and brain SOD and GSH-Px activity (but not the liver), while in the liver caused increased and in the brain decreased TBARS level. These results suggest that Se stimulates antioxidative enzymes in immature kidney and brain of Cd-exposed rats and could protect against oxidative damage.  相似文献   

20.
Mechanism of testicular toxicity induced by dietary cadmium (Cd) has been less investigated than that following acute Cd injection. In the present study we characterized testicular injury in a small rodent, the bank vole, exposed subchronically to dietary Cd in a quantity of 0.9 mol/g, and determined the importance of some factors (Cd accumulation, metallothionein (MT), oxidative stress, and zinc (Zn)) in the injury. Dietary Cd induced moderate histopathological changes (hemorrhage in interstitium, necrosis and apoptosis in seminiferous tubule epithelium) in young (1 month old) bank voles fed, for 6 weeks, Fe-adequate (1.1–1.4 mol/g) and Fe-enriched (4.5–4.8 mol/g) diets. In contrast, adult (5 months old) bank voles appeared to be resistant to the toxic effects of dietary Cd, despite the fact that testicular Cd contents were higher and MT levels lower than those in the young animals. The Cd-induced histopathological changes and apoptosis were accompanied by increased testicular lipid peroxidation, decreased testicular Zn concentration and elevated levels of hepatic and renal MT and Zn. Supplemental dietary Zn (1.7–1.8 mol/g) prevented the Cd-induced testicular Zn depletion and injury. The data indicate that dietary Cd produces testicular lesions indirectly, through decreasing testicular Zn, which seems to be due to the sequestration of this element by the Cd-induced hepatic and renal MT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号