首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
Autotrophic growth of nitrifying community in an agricultural soil   总被引:8,自引:0,他引:8  
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.  相似文献   

2.
Microbial communities transform nitrogen (N) compounds, thereby regulating the availability of N in soil. The N cycle is defined by interacting microbial functional groups, as inorganic N‐products formed in one process are the substrate in one or several other processes. The nitrification pathway is often a two‐step process in which bacterial or archaeal communities oxidize ammonia to nitrite, and bacterial communities further oxidize nitrite to nitrate. Little is known about the significance of interactions between ammonia‐oxidizing bacteria (AOB) and archaea (AOA) and nitrite‐oxidizing bacterial communities (NOB) in determining the spatial variation of overall nitrifier community structure. We hypothesize that nonrandom associations exist between different AO and NOB lineages that, along with edaphic factors, shape field‐scale spatial patterns of nitrifying communities. To address this, we sequenced and quantified the abundance of AOA, AOB, and Nitrospira and Nitrobacter NOB communities across a 44‐hectare site with agricultural fields. The abundance of Nitrobacter communities was significantly associated only with AOB abundance, while that of Nitrospira was correlated to AOA. Network analysis and geostatistical modelling revealed distinct modules of co‐occurring AO and NOB groups occupying disparate areas, with each module dominated by different lineages and associated with different edaphic factors. Local communities were characterized by a high proportion of module‐connecting versus module‐hub nodes, indicating that nitrifier assemblages in these soils are shaped by fluctuating conditions. Overall, our results demonstrate the utility of network analysis in accounting for potential biotic interactions that define the niche space of nitrifying communities at scales compatible to soil management.  相似文献   

3.
完全氨氧化菌(comammox Nitrospira)的发现对硝化微生物的研究提出了新的挑战。大量研究表明完全氨氧化菌在陆地生态系统中广泛分布,但其在农田土壤中的分布规律及其对长期施用粪肥的响应尚不清楚。研究了长期施用猪粪对农田红壤完全氨氧化菌、氨氧化古菌(AOA)和氨氧化细菌(AOB)功能基因(amoA)丰度的影响,及其与土壤净硝化速率的关系。结果表明:与不施肥的对照处理相比,猪粪施用显著提高土壤有机质和养分含量,且随着猪粪的施用量增加而增加。同时,施用中量和高量猪粪显著提升土壤净硝化速率,增幅分别达到317%和416%。所有处理中,完全氨氧化菌丰度以进化枝A为主,进化枝B丰度极低,大多为非特异性扩增产物,但进化枝A的amoA丰度均低于氨氧化古菌和氨氧化细菌。长期施用高量猪粪显著提升进化枝A的amoA基因丰度,表明存在喜好富营养环境的完全氨氧化菌,而有效磷是最主要的影响因子。相关性分析表明,进化枝A的amoA丰度与净硝化速率呈显著正相关(P<0.01),而氨氧化古菌和氨氧化细菌则没有,表明进化枝A可能在长期施用粪肥的农田红壤硝化过程中发挥重要功能。综上所述,长期施用粪肥显著提高...  相似文献   

4.
Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly dominated by Nitrospira rather than Nitrobacter. A significant correlation was observed between the active AOA/AOB ratio and the soil oxidation capacity, implying a greater advantage of AOA over AOB under microaerophilic conditions. These results suggest the important roles of soil physiochemical properties in determining the activities of ammonia oxidizers and nitrite oxidizers.  相似文献   

5.
王智慧  蒋先军 《微生物学报》2021,61(7):1933-1944
【目的】揭示典型农田旱地紫色土硝化微生物的群落组成及其对pH的响应规律。【方法】针对同一母质发育但pH差异显著的3种紫色土,利用宏基因组技术深度测序研究土壤中硝化微生物丰度和群落,包括氨氧化古菌(ammonia-oxidizing archaea,AOA),氨氧化细菌(ammonia-oxidizing bacteria,AOB),亚硝酸盐氧化细菌(nitrite-oxidizingbacteria,NOB)和全程氨氧化细菌(completeammoniaoxidizer,Comammox)。【结果】土壤中硝化微生物的丰度占总微生物的2.130%–6.082%。3种紫色土中AOA、AOB和NOB的相对丰度有显著差异:酸性紫色土中AOA的相对丰度显著大于碱性紫色土,而AOB则相反;NOB的相对丰度在中性紫色土中最高。所有土样中均发现了1种全程氨氧化细菌Candidatus Nitrospira inopinata (Ca. N. inopinata),其在中性紫色土中相对丰度最高,占总微生物的0.203%。3种不同pH紫色土中AOA均以Nitrososphaera为主,NOB均以Nitrospira为主;酸性紫色土中AOB以Nitroscoccus为主,而中性和石灰性紫色土中则以Nitrosospira为主。Pearson相关性分析发现,土壤pH和铵态氮是影响硝化微生物丰度最大的两个因子。【结论】Comammox存在于3种不同pH紫色土中,且偏好中性环境;AOA、AOB和NOB群落结构和相对丰度都存在显著差异,结合相关性分析发现土壤pH和铵态氮是导致差异最重要的两个因子。  相似文献   

6.
Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium concentrations are limiting. Here we report on the interactions between nitrifying communities dominated by ammonia-oxidizing archaea (AOA) and Nitrospira-like nitrite-oxidizing bacteria (NOB), and communities of MOB in controlled microcosm experiments with two levels of ammonium and methane availability. We observed strong stimulatory effects of elevated ammonium concentration on the processes of nitrification and methane oxidation as well as on the abundances of autotrophically growing nitrifiers. However, the key players in nitrification and methane oxidation, identified by stable-isotope labeling using 13CO2 and 13CH4, were the same under both ammonium levels, namely type 1.1a AOA, sublineage I and II Nitrospira-like NOB and Methylomicrobium-/Methylosarcina-like MOB, respectively. Ammonia-oxidizing bacteria were nearly absent, and ammonia oxidation could almost exclusively be attributed to AOA. Interestingly, although AOA functional gene abundance increased 10-fold during incubation, there was very limited evidence of autotrophic growth, suggesting a partly mixotrophic lifestyle. Furthermore, autotrophic growth of AOA and NOB was inhibited by active MOB at both ammonium levels. Our results suggest the existence of a previously overlooked competition for nitrogen between nitrifiers and methane oxidizers in soil, thus linking two of the most important biogeochemical cycles in nature.  相似文献   

7.
The nitrification inhibitors (NIs) 3,4-dimethylpyrazole (DMPP) and dicyandiamide (DCD) can effectively reduce N2O emissions; however, which species are targeted and the effect of these NIs on the microbial nitrifier community is still unclear. Here, we identified the ammonia oxidizing bacteria (AOB) species linked to N2O emissions and evaluated the effects of urea and urea with DCD and DMPP on the nitrifying community in a 258 day field experiment under sugarcane. Using an amoA AOB amplicon sequencing approach and mining a previous dataset of 16S rRNA sequences, we characterized the most likely N2O-producing AOB as a Nitrosospira spp. and identified Nitrosospira (AOB), Nitrososphaera (archaeal ammonia oxidizer) and Nitrospira (nitrite-oxidizer) as the most abundant, present nitrifiers. The fertilizer treatments had no effect on the alpha and beta diversities of the AOB communities. Interestingly, we found three clusters of co-varying variables with nitrifier operational taxonomic units (OTUs): the N2O-producing AOB Nitrosospira with N2O, NO3, NH4+, water-filled pore space (WFPS) and pH; AOA Nitrososphaera with NO3, NH4+ and pH; and AOA Nitrososphaera and NOB Nitrospira with NH4+, which suggests different drivers. These results support the co-occurrence of non-N2O-producing Nitrososphaera and Nitrospira in the unfertilized soils and the promotion of N2O-producing Nitrosospira under urea fertilization. Further, we suggest that DMPP is a more effective NI than DCD in tropical soil under sugarcane.  相似文献   

8.
Forest fertilization in British Columbia is increasing, to alleviate timber shortfalls resulting from the mountain pine beetle epidemic. However, fertilization effects on soil microbial communities, and consequently ecosystem processes, are poorly understood. Fertilization has contrasting effects on ammonia-oxidizing bacteria and archaea (AOB and AOA) in grassland and agricultural ecosystems, but there are no studies on AOB and AOA in forests. We assessed the effect of periodic (6-yearly application 200 kg N ha?1) and annual (c. 75 kg N ha?1) fertilization of lodgepole pine and spruce stands at five long-term maximum productivity sites on potential nitrification (PN), and the abundance and diversity of AOB, AOA and Nitrobacter and Nitrospira-like nitrite-oxidizing bacteria (NOB). Fertilization increased AOB and Nitrobacter-like NOB abundances at some sites, but did not influence AOA and Nitrospira-like NOB abundances. AOB and Nitrobacter-like NOB abundances were correlated with PN and soil nitrate concentration; no such correlations were observed for AOA and Nitrospira-like NOB. Autotrophic nitrification dominated (55–97%) in these forests and PN rates were enhanced for up to 2 years following periodic fertilization. More changes in community composition between control and fertilized plots were observed for AOB and Nitrobacter-like NOB than AOA. We conclude that fertilization causes rapid shifts in the structure of AOB and Nitrobacter-like NOB communities that dominate nitrification in these forests.  相似文献   

9.
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.  相似文献   

10.
Nitrite-oxidizing bacteria (NOB) catalyse the second nitrification step and are the main biological source of nitrate. The most diverse and widespread NOB genus is Nitrospira, which also contains complete ammonia oxidizers (comammox) that oxidize ammonia to nitrate. To date, little is known about the occurrence and biology of comammox and canonical nitrite oxidizing Nitrospira in extremely alkaline environments. Here, we studied the seasonal distribution and diversity, and the effect of short-term pH changes on comammox and canonical Nitrospira in sediments of two saline, highly alkaline lakes. We identified diverse canonical and comammox Nitrospira clade A-like phylotypes as the only detectable NOB during more than a year, suggesting their major importance for nitrification in these habitats. Gross nitrification rates measured in microcosm incubations were highest at pH 10 and considerably faster than reported for other natural, aquatic environments. Nitrification could be attributed to canonical and comammox Nitrospira and to Nitrososphaerales ammonia-oxidizing archaea. Furthermore, our data suggested that comammox Nitrospira contributed to ammonia oxidation at an extremely alkaline pH of 11. These results identify saline, highly alkaline lake sediments as environments of uniquely strong nitrification with novel comammox Nitrospira as key microbial players.  相似文献   

11.
我国亚热带地区是全球氮沉降的热点区域。氮沉降会影响氨氧化微生物的丰度和群落结构,进而改变土壤微生物驱动的养分循环。目前对新近发现的完全氨氧化菌认识不足,极大地制约了对森林土壤氨氧化微生物响应氮沉降的整体认识。本研究以福建省三明市辛口镇格氏栲自然保护区长期模拟氮沉降处理土壤为研究对象,利用实时定量PCR方法,研究氨氧化微生物(包括氨氧化细菌AOB、氨氧化古菌AOA和完全氨氧化菌comammox Nitrospira),尤其是完全氨氧化菌的amoA基因丰度。模拟氮沉降处理包括:不添加N(CK)、低氮(添加40 kg N·hm-2·a-1,LN)和高氮(添加80 kg N·hm-2·a-1,HN)。结果表明: 8年的氮添加降低了土壤pH值和有机碳含量,提高了土壤硝态氮含量。供试土壤的AOB丰度低于检测限,无法获得目的片段。高氮处理显著提高了AOA丰度,但对完全氨氧化菌clade A和clade B丰度无显著影响。两种氮添加处理均降低了完全氨氧化菌/AOA值,表明氮添加降低了完全氨氧化菌在亚热带森林土壤氨氧化微生物类群中的相对竞争力。针对完全氨氧化菌clade A和clade B的扩增都存在非特异性产物,表明针对森林土壤的高特异性和覆盖度设计引物的必要性。Clade A和clade B丰度与总氮和铵态氮含量呈显著正相关,clade B丰度还与有机碳含量呈显著正相关。总之,模拟氮沉降提高了AOA在亚热带米槠天然林土壤硝化过程中的相对重要性,这些发现可为该地区应对全球变化和氮沉降的风险评估提供理论依据。  相似文献   

12.
Ammonia oxidation is an important process for global nitrogen cycling. Both ammonia-oxidizing bacteria (AOB) and archaea (AOA) can be the important players in nitrification process. However, their relative contribution to nitrification remains controversial. This study investigated the abundance and community structure of AOA and AOB in sediment of Miyun Reservoir and adjacent soils. Quantitative PCR assays indicated that the highest AOA abundance occurred in unplanted riparian soil, followed by reservoir sediment, reed-planted riparian soil and agricultural soil. The AOB community size in agricultural soil was much larger than that in the other habitats. Large variations in the structures of AOA and AOB were also observed among the different habitats. The abundance of Nitrosospira-like AOB species were detected in the agricultural soil and reservoir sediment. Pearson’s correlation analysis showed the AOB diversity had positive significant correlations with pH and total nitrogen, while the AOA diversity might be negatively affected by nitrate nitrogen and ammonia nitrogen. This work could add new insights towards nitrification in aquatic and terrestrial ecosystems.  相似文献   

13.
Temperate terrestrial ecosystems are currently exposed to increased atmospheric CO2 and progressive climatic changes with increased temperature and periodical drought. We here present results from a field experiment, where the effects of these three main climate change related factors are investigated solely and in all combinations at a temperate heathland. Significant responses were found in the top soils below the two dominant species (Calluna vulgaris and Deschampsia flexuosa). During winter incubation, microbial immobilization of N and ammonification rate decreased in response to warming in Deschampsia soil, and microbial immobilization of N and P decreased in warmed Calluna soil. Warming tended to increase microbial N and P in Calluna but not in Deschampsia soil in fall, and more microbial C was accumulated under drought in Calluna soil. The effects of warming were often counteracted or erased when combined with CO2 and drought. Below Deschampsia, the net nitrification rate decreased in response to drought and, while phosphorus availability and microbial P immobilization decreased, but nitrification increased in response to elevated CO2. Furthermore, leaf litter decomposition of both species decreased in response to drought. These complex changes in availability and release of nutrients from soil organic matter turnover and mineralization in response to elevated CO2 and climate change may influence the future plant carbon sequestration and species composition at temperate heathlands.  相似文献   

14.
The microbial ecology of the nitrogen cycle in agricultural soils is an issue of major interest. We hypothesized a major effect by farm management systems (mineral versus organic fertilizers) and a minor influence of soil texture and plant variety on the composition and abundance of microbial nitrifiers. We explored changes in composition (16S rRNA gene) of ammonia-oxidizing archaea (AOA), bacteria (AOB), and nitrite-oxidizing bacteria (NOB), and in abundance of AOA and AOB (qPCR of amoA genes) in the rhizosphere of 96 olive orchards differing in climatic conditions, agricultural practices, soil properties, and olive variety. Majority of archaea were 1.1b thaumarchaeota (soil crenarchaeotic group, SCG) closely related to the AOA genus Nitrososphaera. Most AOB (97%) were identical to Nitrosospira tenuis and most NOB (76%) were closely related to Nitrospira sp. Common factors shaping nitrifiers assemblage composition were pH, soil texture, and olive variety. AOB abundance was positively correlated with altitude, pH, and clay content, whereas AOA abundances showed significant relationships with organic nitrogen content and exchangeable K. The abundances of AOA differed significantly among soil textures and olive varieties, and those of AOB among soil management systems and olive varieties. Overall, we observed minor effects by orchard management system, soil cover crop practices, plantation age, or soil organic matter content, and major influence of soil texture, pH, and olive tree variety.  相似文献   

15.
The ongoing climate change affects biogeochemical cycling in terrestrial ecosystems, but the magnitude and direction of this impact is yet unclear. To shed further light on the climate change impact, we investigated alterations in the soil nitrogen (N) cycling in a Danish heathland after 5 years of exposure to three climate change factors, i.e. warming, elevated CO2 (eCO2) and summer drought, applied both in isolation and in combination. By conducting laboratory 15N tracing experiments we show that warming increased both gross N mineralization and nitrification rates. In contrast, gross nitrification was decreased by eCO2, an effect that was more pronounced when eCO2 was combined with warming and drought. Moreover, there was an interactive effect between the warming and CO2 treatment, especially for N mineralization: rates increased at warming alone but decreased at warming combined with eCO2. In the full treatment combination, simulating the predicted climate for the year 2075, gross N transformations were only moderately affected compared to control, suggesting a minor alteration of the N cycle due to climate change. Overall, our study confirms the importance of multifactorial field experiments for a better understanding of N cycling in a changing climate, which is a prerequisite for more reliable model predictions of ecosystems responses to climate change.  相似文献   

16.
This study examined the hypothesis that different inorganic carbon (IC) conditions enrich different ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) populations by operating two laboratory-scale continuous-flow bioreactors fed with 15 and 100 mg IC/L, respectively. During this study, both bioreactors maintained satisfactory nitrification performance and stably oxidized 250 mg?N/L of influent ammonium without nitrite accumulation. Based on results of cloning/sequencing and terminal restriction fragment length polymorphism targeting on the ammonia monooxygenase subunit A (amoA) gene, Nitrosomonas nitrosa lineage was identified as the dominant AOB population in the high-IC bioreactor, while Nitrosomonas europaea and Nitrosomonas nitrosa lineage AOB were dominant in the low-IC bioreactor. Results of real-time polymerase chain reactions for Nitrobacter and Nitrospira 16S rRNA genes indicated that Nitrospira was the predominant NOB population in the high-IC bioreactor, while Nitrobacter was the dominant NOB in the low-IC bioreactor. Furthermore, batch experiment results suggest that N. europaea and Nitrobacter populations are proliferated in the low-IC bioreactor due to their higher rates under low IC conditions despite the fact that these two populations have been identified as weak competitors, compared with N. nitrosa and Nitrospira, under low ammonium/nitrite environments. This study revealed that in addition to ammonium/nitrite concentrations, limited IC conditions may also be important in selecting dominant AOB/NOB communities of nitrifying bioreactors.  相似文献   

17.
It is well known that the ratio of ammonia-oxidizing archaea (AOA) and bacteria (AOB) ranges widely in soils, but no data exist on what might influence this ratio, its dynamism, or how changes in relative abundance influences the potential contributions of AOA and AOB to soil nitrification. By sampling intensively from cropped-to-fallowed and fallowed-to-cropped phases of a 2-year wheat/fallow cycle, and adjacent uncultivated long-term fallowed land over a 15-month period in 2010 and 2011, evidence was obtained for seasonal and cropping phase effects on the soil nitrification potential (NP), and on the relative contributions of AOA and AOB to the NP that recovers after acetylene inactivation in the presence and absence of bacterial protein synthesis inhibitors. AOB community composition changed significantly (P⩽0.0001) in response to cropping phase, and there were both seasonal and cropping phase effects on the amoA gene copy numbers of AOA and AOB. Our study showed that the AOA:AOB shifts were generated by a combination of different phenomena: an increase in AOA amoA abundance in unfertilized treatments, compared with their AOA counterparts in the N-fertilized treatment; a larger population of AOB under the N-fertilized treatment compared with the AOB community under unfertilized treatments; and better overall persistence of AOA than AOB in the unfertilized treatments. These data illustrate the complexity of the factors that likely influence the relative contributions of AOA and AOB to nitrification under the various combinations of soil conditions and NH4+-availability that exist in the field.  相似文献   

18.
《Process Biochemistry》2010,45(9):1543-1549
In this study laboratory scale biological activated carbon (BAC) columns were operated with water taken from a surface water reservoir in Istanbul. The aim was to evaluate the efficiency of nitrification in columns packed with two different granular activated carbon grades (open superstructure/chemically activated and closed superstructure/steam activated carbon) and to examine the probable beneficial effect of pre-ozonation. The occurrence and diversity of ammonia-oxidizing bacteria were investigated using 16S rDNA and amoA gene based molecular techniques. Nearly complete removal of NH4+-N was achieved by nitrification in both carbon types. The nitrification efficiency did not change in columns fed with ozonated water. However, the type of feed (either raw or ozonated) played a more important role than the type of GAC with respect to the dominance of nitrifier species in BAC columns. In biofilters ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were most closely related to Nitrosomonas spp. and Nitrospira spp. as determined by cloning and slot-blot analysis, respectively. The fraction of the AOB population in the biomass was high as detected by real-time PCR. The amoA/16S rDNA ratio varied from 28.7% to 2.1% along the depth of filters. In spite of similar removal efficiencies, BAC columns fed with ozonated water harbored different types of AOB than columns that were receiving raw water.  相似文献   

19.
Nitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of nitrification, ammonia oxidation, is performed by three, often co-occurring guilds of chemolithoautotrophs: ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized. Here, the ammonia oxidation kinetic properties of 12 AOA representing all major cultivated phylogenetic lineages were determined using microrespirometry. Members of the genus Nitrosocosmicus have the lowest affinity for both ammonia and total ammonium of any characterized AOA, and these values are similar to previously determined ammonia and total ammonium affinities of AOB. This contrasts previous assumptions that all AOA possess much higher substrate affinities than their comammox or AOB counterparts. The substrate affinity of ammonia oxidizers correlated with their cell surface area to volume ratios. In addition, kinetic measurements across a range of pH values supports the hypothesis that—like for AOB—ammonia and not ammonium is the substrate for the ammonia monooxygenase enzyme of AOA and comammox. Together, these data will facilitate predictions and interpretation of ammonia oxidizer community structures and provide a robust basis for establishing testable hypotheses on competition between AOB, AOA, and comammox.Subject terms: Archaeal physiology, Metabolism, Microbial ecology  相似文献   

20.
Chemoautotrophic ammonia-oxidizers and nitrite-oxidizers are responsible for a significant amount of soil nitrate production. The identity and composition of these active nitrifiers in soils under different long-term fertilization regimes remain largely under-investigated. Based on that soil nitrification potential significantly decreased in soils with chemical fertilization (CF) and increased in soils with organic fertilization (OF), a microcosm experiment with DNA stable isotope probing was further conducted to clarify the active nitrifiers. Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) were found to actively respond to urea addition in soils with OF and no fertilizer (CK), whereas only AOB were detected in soils with CF. Around 98% of active AOB were Nitrosospira cluster 3a.1 in all tested soils, and more than 90% of active AOA were Nitrososphaera subcluster 1.1 in unfertilized and organically fertilized soils. Nitrite oxidation was performed only by Nitrospira-like bacteria in all soils. The relative abundances of Nitrospira lineage I and VI were 32% and 61%, respectively, in unfertilized soils, and that of Nitrospira lineage II was 97% in fertilized soils, indicating long-term fertilization shifted the composition of active Nitrospira-like bacteria in response to urea. This finding indicates that different fertilizer regimes impact the composition of active nitrifiers, thus, impacting soil nitrification potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号