首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using metabolic labelling and sucrose density fractionation we compared the synthesis of lysozyme and lysosomal enzymes in human monocytic U937 cells. In pulse-chase experiments in sucrose density gradients, the intracellular radioactively labelled lysozyme distributed similarly to cathepsin D and β-hexosaminidase. With the aid of immunochemical detection in Western blots, the steady-state distribution of lysozyme was found to be slightly different from that of β-hexosaminidase; relatively more lysozyme was present in fractions sedimenting between lysosomes and the Golgi apparatus. The observed distribution of the lysozyme antigen with a prominent peak in the lysosomal fraction was in striking contrast to the broad distribution of the lysozyme activity. The difference was explained by a bias in the determination of the activity of lysozyme by the ‘lysoplate’ diffusion assay.  相似文献   

2.
Biochemical evidence for an endocytically inactive population of lysosomes   总被引:1,自引:0,他引:1  
The peroxidase dependent, diaminobenzidine (DAB) density shift procedure was applied to the characterization of lysosomes from Chinese hamster ovary (CHO) cells. Peroxidase activity was localized in lysosomes by a 15-18 h internalization period. After treatment with DAB, the distribution of peroxidase activity in Percoll gradients was shifted, as a population, to a higher density. A bimodal distribution which included a low density population was observed for the native lysosomal enzyme beta-hexosaminidase after DAB treatment. A second lysosomal enzyme, alpha-fucosidase, was strongly inhibited by DAB treatment with the residual activity corresponding in distribution to the light beta-hexosaminidase population. The occurrence of a low density lysosomal population after the DAB procedure suggests the existence of an endocytically inactive lysosomal population in fibroblasts. Probable physiological candidates for such a population are discussed.  相似文献   

3.
Normal rat liver lysosomal membranes in the form of membrane vesicles have been purified using Percoll density gradient centrifugation. Lysosomes (density = 1.111) were purified approximately 63 +/- 12-fold (mean +/- standard deviation, n = 5) using a gradient of Percoll made isotonic with sucrose and buffered to pH 7.0. These lysosomes were then exposed to 10 mM methionine methyl ester, pH 7.0, the uptake of which resulted in swelling and breakage of the lysosomes with subsequent vesicle formation. These vesicles (density = 1.056) were further separated from residual mitochondrial and plasma membrane enzyme activities using a second Percoll density gradient. Marker enzyme analysis and electron microscopy indicated that the lysosomal membranes were essentially free of both beta-hexosaminidase, a soluble lysosomal enzyme, and contaminating organelles. The specific activity of lysosomal ATPase in the lysosomal membranes was fourfold greater than in the intact lysosomes.  相似文献   

4.
Processing and transport of lysosomal enzymes in human monocyte line U937   总被引:1,自引:0,他引:1  
Precursors of cathepsin D and beta-hexosaminidase synthesized in the U937 monocyte line are processed to mature forms with similar kinetics as in fibroblasts. In U937 cells the processing of the precursor of the beta-chain of beta-hexosaminidase, however, results in a larger fragment that resembles a processing intermediate in fibroblasts. This difference is explained by differences in the equipment of the cells with proteinases, since cross-feeding of the precursors to the cells results in a processing characteristic for the recipient cell type. In sucrose gradients the precursors are found partly in a low- and partly in a high-density region. Mature polypeptides and activity of lysosomal enzymes fractionate mainly in the higher density region. In U937 cells the transport and maturation of endogenous lysosomal enzymes are less sensitive to bases (NH4Cl, chloroquine, tilorone) and to antibody against the mannose 6-phosphate specific receptors than in fibroblasts. A small portion of enzymes released from U937 cells contains the markers recognized by the mannose-6-phosphate specific receptors. U937 cells express these receptors and utilize them for transport of endogenous and exogenous lysosomal enzymes. It appears, however, that a fraction of lysosomal enzymes is transported in U937 cells independent of the mannose-6-phosphate-specific receptors.  相似文献   

5.
Plasma levels of a lysosomal enzyme, beta-hexosaminidase (beta-N-acetylglucosaminidase, EC 3.2.1.30) were studied in Wistar rats after administration of 99mTc -sulfur colloid, 198Au colloid, gelatine (Haemaccel), alcohol, methylpalmitate and zymosan. The activity of beta-hexosaminidase was increased 10, 30 and 60 min after the zymosan injection. After 24 and 48 h, enzyme levels had returned to those at outset. The transient release of beta-hexosaminidase probably occurred only during the phagocytosis of zymosan which was evaluated by histological examination of lung, liver and spleen. After the injection of all other agents tested, no significant aberration of beta-hexosaminidase levels was seen. Activity distribution of the radio-labeled colloids revealed differences in organ uptake which were attributed to a difference in colloid particle size. Although the colloids tested have been used extensively for determination of reticuloendothelial function and histological studies suggest phagocytosis of the particles, their administration did not affect plasma beta-hexosaminidase levels. Since lysosomal enzymes are cleared from the blood predominantly by liver macrophages, the primary location of particle phagocytosis may explain the present findings.  相似文献   

6.
The effect of flavonoids on beta-hexosaminidase transport and endocytosis has been studied in cultured human skin fibroblasts. In mucolipidosis II fibroblast cultures, characterized by their preferential secretion of most newly synthesized hydrolases, quercetin and phloretin (200 microM) inhibited beta-hexosaminidase synthesis as well as total culture-associated enzyme activity. Taxifolin induced a 2.4-fold increase in the total enzyme activity without altering the intra- and extracellular distribution of the enzyme. Rutin, although less effective, also stimulated an overall increase in total enzyme. The flavonoid effects were all concentration-dependent. Very little effect was observed in either the distribution or the total beta-hexosaminidase activity in normal fibroblast cultures. Taxifolin and hesperitin inhibited receptor-mediated endocytosis of beta-hexosaminidase by fibroblasts up to 50% of control uptake. Naringin, quercetin, and phloretin moderately inhibited uptake by 30% while rutin and fisetin had no effect. The results demonstrate that certain naturally occurring flavonoids affect the secretion of lysosomal enzymes as well as their endocytosis by fibroblasts. Since most individuals ingest up to one gram per day of these substances, flavonoids may prove to have significant effects on normal lysosomal enzyme physiology.  相似文献   

7.
Intracellular transport of two lysosomal enzymes, acid alpha-glucosidase and beta-hexosaminidase, was analyzed in human fibroblasts. The precursors of beta-hexosaminidase in normal fibroblasts were released from the membrane fraction by treatment with mannose 6-phosphate, but the precursor of alpha-glucosidase was not. Percoll density gradient centrifugation revealed a normal amount of acid alpha-glucosidase activity in heavy lysosomes in I-cell disease fibroblasts despite impaired maturation and defective phosphorylation, and beta-hexosaminidase activity was markedly reduced in lysosomes. It was concluded that the membrane-bound precursor of acid alpha-glucosidase is transported to lysosomes by a phosphomannosyl receptor-independent system although the enzyme lacks the recognition marker for the phosphomannosyl receptor and processing of an intermediate form to mature forms does not occur in this disease.  相似文献   

8.
We have employed colloidal silica (Percoll) density-gradient subcellular fractionation technique to examine the distribution of lysosomal hydrolases between intermediate vesicles (primary lysosomes) and secondary lysosomes in contact-inhibited non-proliferating vs proliferating chicken embryo fibroblasts. We find that the activities of lysosomal specific enzymes from both phases of growth are distributed within two peaks; however, the relative amounts differ markedly. In normal, non-proliferating cells approx. 60% of the total activities of cathepsin B, beta-mannosidase, alpha-fucosidase, beta-galactosidase and hexosaminidase is recovered in the heavier density fraction corresponding to secondary lysosomes, while less than 9% of the enzyme activities are recovered in the light-density peak. With transformed cells, between 16 and 22% of activity for these enzymes are recovered in the lighter density intermediate vesicle fraction, when less than 40% of the enzyme activities recovered in the heavy density fraction. beta-Glucuronidase distribution was different from that of the above enzymes. First, a more even distribution between the two lysosomal fractions was found with non-proliferating normal cells (33% in heavy-density fraction and 21% in light-density fraction), whereas more than 40% of the total enzyme activity was recovered in the lighter density fraction from transformed cells. Also, the amount of cathepsin B contained in the vesicle fractions is increased severalfold relative to that of contact-inhibited normal cells. However, the apparent differences in enzyme distribution between confluent normal and transformed cells are not found when vesicles are prepared from subconfluent, actively proliferating cultures. We have also compared the Percoll density gradient patterns of membrane vesicles from proliferating and non-proliferating human fibroblasts, since most earlier studies utilized this system. Again, we find that the majority of beta-hexosaminidase activity (41%) of contact-inhibited, confluent cells is recovered in the heavier density fraction with less than 15% in the lighter density fraction. Also, the distribution of beta-hexosaminidase between the heavy density and light density vesicle fractions is altered in homogenates from exponentially growing cells, being 22% and 26% respectively. We conclude that the distribution of lysosomal hydrolases between the two vesicle populations is growth-phase dependent and is markedly heterogeneous in proliferating cells.  相似文献   

9.
The biosynthesis and intracellular transport of the membrane-associated lysosomal enzyme glucocerebrosidase was studied in the monoblast cell line U937. Addition to the cultures of the oligosaccharide trimming inhibitors swainsonine or deoxymannojirimycin led to an increased intracellular activity of glucocerebrosidase. This was due to prevention of the lysosomal degradation of the enzyme. When homogenates of control cells were fractionated on Percoll gradients glucocerebrosidase, like beta-hexosaminidase, was distributed in two peaks, one at low density and one at high density. When homogenates of cells cultured in the presence of oligosaccharide trimming inhibitors were fractionated beta-hexosaminidase was still distributed in two peaks but glucocerebrosidase was found mainly in low density fractions also containing galactosyltransferase activity. It is concluded that complex type oligosaccharide chain formation is required for efficient routing of glucocerebrosidase to the lysosomes in U937 cells.  相似文献   

10.
A single intravenous injection of 0.1 mg of heat-killed Bacillus Calmette Guérin (BCG) in 0.1 ml of Bayol F produced an accumulation of activated alveolar macrophages (BCG induced). Cells were collected 3.5–4.0 wk after injection. Phospholipases A and three lysosomal marker enzymes (acid phosphatase, β-glucuronidase, and lysozyme) were measured in homogenates, and the distribution of the phospholipases A and lysosomal, mitochondrial, and microsomal marker enzymes were examined after sucrose gradient centrifugation of a postnuclear (1,000 g) supernatant. Homogenates of normal and BCG-induced macrophages contained phospholipases A1 and A2 which had optimal activity at pH 4.0 in the presence of 2.0 mM ethylenediaminetetraacetate (EDTA). These activities were inhibited 50–70% by 2.0 mM CaCl2. Homogenates of BCG-induced macrophages had specific activities of β-glucuronidase, acid phosphatase, and lysozyme, which were increased 1.5- to 3.0-fold over the controls, whether expressed as activity per mg protein or activity per 107 cells. The specific activities of the phospholipases A, on the other hand, were consistently lower than those of the control. Distribution of the phospholipases A and the lysosomal marker enzymes after sucrose gradient centrifugation suggested that the phospholipases A active at pH 4.0 in the presence of EDTA are of lysosomal origin since: (a) BCG treatment caused a selective increase in the density of particles which contained both the phospholipases A and three lysosomal marker enzymes; and (b) since the density of mitochondria and microsomes were not affected by BCG treatment. The increase in the density of lysosomes seen here may be related to previously described morphologic changes of BCG-induced alveolar macrophages.  相似文献   

11.
In this study, we investigated the mechanism of PLA(2)-induced lysosomal destabilization. Through the measurements of lysosomal beta-hexosaminidase free activity, their membrane potential, the intra-lysosomal pH and the lysosomal latency loss in hypotonic sucrose medium, we established that PLA(2) could increase the lysosomal membrane permeability to both potassium ions and protons. The enzyme could also enhance the organelle osmotic sensitivity. The increases in the lysosomal ion permeability promoted influx of potassium ions into the lysosomes via K(+)/H(+) exchange. The resulted osmotic imbalance across the lysosomal membranes osmotically destabilized the lysosomes. In addition, the enhancement of the lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in the osmotic stress. The results explain how PLA(2) destabilized the lysosomes.  相似文献   

12.
Lysosomal destabilization is a critical event not only for the organelle but also for living cells. However, what factors can affect lysosomal stability is not fully studied. In this work, the effects of phosphatidic acid (PA) on the lysosomal integrity were investigated. Through the measurements of lysosomal beta-hexosaminidase free activity, intralysosomal pH, leakage of lysosomal protons and lysosomal latency loss in hypotonic sucrose medium, we established that PA could increase the lysosomal permeability to K+ and H+, and enhance the lysosomal osmotic sensitivity. Treatment of lysosomes with PA promoted entry of K+ into the organelle via K+/H+ exchange, which could produce osmotic stresses and osmotically destabilize the lysosomes. In addition, PA-induced increase in the lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in osmotic shocks. The results suggest that PA may play a role in the lysosomal destabilization.  相似文献   

13.
To study the sorting of proteins in Dictyostelium discoideum, we used vector constructs that contain cDNA coding for the entire beta-hexosaminidase protein to prepare transformants of a mutant that lacks this enzyme activity. These transformants overexpressed active, normally processed beta-hexosaminidase. The overexpressed enzyme colocalized with other acid hydrolases in the soluble fraction of vesicles in the lysosomal region of Percoll gradients. The sorting of other hydrolases was unaltered. We also prepared transformants with constructs that contain 22 (Hex 22-Inv), 70 (Hex 70-Inv), and 532 (Hex 532-Inv) amino-terminal amino acids from beta-hexosaminidase fused in frame with the coding sequence for the yeast SUC2 gene product, invertase. Fusion molecular masses were those expected for fully N-glycosylated proteins. Hex 22-Inv was rapidly (t1/2 less than 30 min) and quantitatively secreted. The others were slowly (t1/2 greater than 5 h) and partially secreted. Each expressed invertase activity. During growth, the invertase activity of Hex 70-Inv and Hex 532-Inv was retained to the same extent as that of endogenous lysosomal enzymes. Most of the Hex 70-Inv migrated in Percoll gradients with vesicles of intermediate density (d = 1.055), but a portion co-migrated with lysosomal enzymes at d = 1.08. Hex 70-Inv was sulfated, and its N-glycosides were resistant to endoglycosidase H, indicating Golgi processing. Hex 70-Inv and Hex 532-Inv, like endogenous lysosomal enzymes, were subject to developmentally induced secretion.  相似文献   

14.
A lysine-rich area in the beta subunit of beta-hexosaminidase (beta-N-acetylhexosaminidase, EC 3.2.1.52) homologous to residues 189-203 in Cathepsin D, previously proposed as being critical for efficient lysosomal targeting, was identified. In vitro mutagenesis of the Lys residues was followed by COS-1 cell expression of enzymatic activity. The intracellular mutant beta-hexosaminidase B activity had a T1/2 at 60 degrees C similar to that of the wild type enzyme, indicating that this region is likely on the surface of the folded enzyme, as is the targeting domain of Cathepsin D. However, in the case of beta-hexosaminidase B, mutation of the Lys residues did not affect lysosomal compartmentalization. These data suggest that the hunt for the common protein signal that results in proper intracellular transport of lysosomal enzymes will not be straightforward and that Lys residues may not be an absolute requirement of the signal.  相似文献   

15.
Various lysosomal acid hydrolases from tissues of Niemann-Pick mice, a mutant strain of C57BL/KsJ mice (spm/spm), were examined and compared to those from control mice. Activities of beta-hexosaminidase, beta-galactosidase, acid phosphatase, and cathepsin L were elevated in the liver and spleen of the affected mice, whereas no significant changes in beta-glucosidase and acid alpha-glucosidase were observed. Alpha-Mannosidase and neutral alpha-glucosidase activities were rather decreased in the affected mouse liver. The level of beta-hexosaminidase in the Niemann-Pick mice was raised sixfold in the liver and two- to threefold in the spleen and brain, whereas its total activity was decreased in the kidney. Sixty to ninety percent of total activity of lysosomal hydrolases was solubilized with 0.1% Triton X-100 in control mice, but most of the beta-hexosaminidase activity of the Niemann-Pick mice remained associated with the membrane fraction of liver lysosomes. The beta-hexosaminidase of the Niemann-Pick mice was appreciably stable when heated at 55 degrees C, while hydrolases of the affected mice and all of the enzymes tested in control mice were heat labile. The relative content of two beta-hexosaminidase fractions separated by DEAE-cellulose column chromatography was 8% for beta-hexosaminidase I and 92% for beta-hexosaminidase II in the case of the control mouse liver. The isozyme pattern of hexosaminidases in Niemann-Pick mice was similar to that of control enzymes. However, the beta-hexosaminidase II accumulated in Niemann-Pick mouse liver was different from that of the control in optimum pH, Km values and thermostability.  相似文献   

16.
Effect on lysosomes of invertase endocytosed by rat-liver   总被引:1,自引:0,他引:1  
The intracellular localization of invertase endocytosed by rat liver was investigated by analytical centrifugation in sucrose and Percoll gradients of mitochondrial fractions originating from rats killed 15 h after injection. After isopycnic centrifugation in a sucrose gradient, invertase is located in higher density zones than acid hydrolases. The difference between the distribution of invertase and that of acid hydrolases increases with the amount of invertase injected. When the invertase dose is sufficiently high, a change of lysosomal enzyme distribution is clearly visible. It consists in the shift of a proportion of these enzymes to higher density regions where invertase is located. The proportion of hydrolase activity affected by invertase is different for each enzyme measured; it is the least pronounced for acid phosphatase, and most for acid deoxyribonuclease and arylsulfatase. A pretreatment of the rat with Triton WR 1339 considerably decreases the equilibrium density of structures bearing invertase. Nevertheless invertase distribution is quite distinct from that of the bulk of lysosomal enzymes that are recovered in lower density zones of the gradient; on the other hand the invertase injection to rats treated with Triton WR 1339 causes a spreading of the acid hydrolase distribution towards higher density zones. The distribution of acid hydrolases and invertase in a Percoll gradient depends on the sucrose concentration of the solvent. It is shifted towards higher densities when the sucrose concentration increases. The phenomenon is more important for invertase. These results are best explained by supposing that invertase accumulates in a distinct population of lysosomes that can be individualized as a result of the density increase they are subjected to by the invertase they accumulate. It is proposed that these lysosomes mainly originate from non-parenchymal cells of the liver.  相似文献   

17.
The intracellular localization of exogenously supplied human platelet beta-glucuronidase in cultured skin fibroblasts derived from a beta-glucuronidase-deficient patient was studied. Four cellular fractions were obtained by differential speed centrifugation. Following two days of incubation, the exogenously supplied enzyme exhibited a distribution pattern identical to that of endogenous beta-hexosaminidase. Disruption of membranes by freezing and thawing caused a 35% increase of the enzyme activity, thus indicating a latent activity following the internalization. This indicated localization in the lysosomal fractions. Longer incubation periods led to an intracellular shift of the engulfed enzyme from the lighter lysosomal fraction to heavier particles. Once located in the heavier fraction, the enzyme was relatively stable, and participated in the catabolism of 35S-labeled mucopolysaccharides which had accumulated in the lysosomes of these fibroblasts. A marked reduction in the accumulated mucopolysaccharides of the lysosomal fraction was observed following addition of the enzyme. This was accompanied by the formation of smaller sized molecules.  相似文献   

18.
Lysosomal enzymes require a mannose 6-phosphate recognition marker, constructed on asparagine-linked oligosaccharide chains, for targeting to lysosomes. We have identified the glycosylation sites of human beta-hexosaminidase B and have determined the influence of individual oligosaccharides on the phosphorylation, lysosomal targeting, and catalytic activity of the enzyme. The five potential glycosylation sites of the hexosaminidase beta-chain were modified individually by site-directed mutagenesis, and the constructs were expressed in COS 1 cells. By this analysis, we determined that four of the five potential sites were glycosylated. Two of the four oligosaccharides were preferentially phosphorylated. The absence of these two preferentially phosphorylated oligosaccharides resulted in greatly reduced amounts of the lysosomal form of the enzyme with increased secretion into the medium. The catalytic activity of beta-hexosaminidase B was not significantly altered by the absence of individual oligosaccharides suggesting the folding and assembly of the enzyme was not disrupted.  相似文献   

19.
The isolation of plasma membrane from human peripheral blood monocytes is described. Monocytes were isolated by centrifugal elutriation, to eliminate an adherence step, thus minimizing functional and surface antigenic alterations to the cells. Monocytes were surface-labelled with a radiolabelled monoclonal antibody, 125I-WVH-1, and then disrupted by nitrogen cavitation. Membranes were separated according to equilibrium buoyant density by isopycnic centrifugation on a sucrose gradient. The subcellular membranes were localized using marker enzymes for the plasma membrane, 5'-nucleotidase and leucine 2-naphthylamidase (leucine aminopeptidase), and for intracellular membranes: galactosyltransferase (Golgi), arylsulfatase C (endoplasmic reticulum), monoamine oxidase (mitochondria), catalase (peroxisomes), beta-hexosaminidase and beta-glucuronidase (lysosomal vesicles) and lactate dehydrogenase (cytosol). The monoclonal antibody 125I-WVH-1 was shown to label the plasma membrane, as judged by known markers, and represents a highly specific trace label, applicable to the use of plasma membrane as an immunogen for monoclonal antibody production. The NAD-splitting enzyme, NAD+ nucleosidase, was detected and its presence on the plasma membrane was demonstrated. The subcellular localization of non-specific esterase in human mononuclear phagocytes is controversial. No evidence was found for alpha-naphthyl acetate esterase activity on the plasma membrane or in lysosomal vesicles. However, a membrane-bound esterase in fractions with properties similar to the smooth endoplasmic reticulum was detected.  相似文献   

20.
Inhibition by cyanate of the processing of lysosomal enzymes   总被引:9,自引:3,他引:6       下载免费PDF全文
In cultured human fibroblasts, maturation of the lysosomal enzymes beta-hexosaminidase and cathepsin D is inhibited by 10 mM-potassium cyanate. In cells treated with cyanate the two enzymes accumulate in precursor forms. The location of the accumulated precursor is probably non-lysosomal; in fractionation experiments the precursors separate from the bulk of the beta-hexosaminidase activity. The secretion of the precursor of cathepsin D, but not that of beta-hexosaminidase precursor, is enhanced in the presence of cyanate. The secreted cathepsin D, as well as that remaining within the cells, contains mostly high-mannose oligosaccharides cleavable with endo-beta-N-acetylglucosaminidase H. After removal of cyanate, the accumulated precursor forms of the lysosomal enzymes are largely released from the pretreated cells. It is concluded that cyanate interferes with the maturation of lysosomal-enzyme precursors by perturbing their intracellular transport. Most probably cyanate affects certain functions of the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号