首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
许多年前就发现植物体内有些细胞的胞壁可以向内生长侵入细胞质,形成瘤状突起。由于细胞壁频繁地内突,质膜也就随之反复凹陷和转折,其表面积显著增加,从而大大地提高了它对溶质吸收或分泌的效率。这种细胞叫做转移细胞(或传递细胞,图1,2)。它们在物质的短途运输中,特别是在维管束输导细胞的物质装卸中起着重要的作用。实际上,转移细胞并不是一种新  相似文献   

2.
植物的质膜(plasma membrane)具有很重要的功能,它关系到细胞与它周围环境之间的物质交换、细胞壁物质的合成、质膜与其它膜系(membrane system)的分子交换、细胞融合(cell fusion)、细胞识别(cell re-  相似文献   

3.
仅仅是在最近些年,植物生理学家才能够清楚地说明,叶子的绿色组织中合成的蔗糖是如何进入小叶脉的韧皮部并在那里浓缩的。蔗糖由绿色组织进入韧皮部的过程中,必须穿过两层膜和一个细胞间隙。首先,蔗糖在绿色组织细胞的细胞质中合成,并从那里穿过质膜进入质外体。质外体是植物无生命的细胞壁空间,它含有处于细胞壁的表面上和其间隙中的水溶液。蔗糖穿过绿色组织细胞的质膜时,就进入这个溶液。第二,蔗糖在质外体溶液中向韧皮部细胞扩散(不超过五个细胞直径的距离),并通过质膜被吸收进入这些细胞。在质外体内的蔗糖  相似文献   

4.
气孔运动调节植物的光合作用和蒸腾作用,对植物的生长发育和干旱等非生物胁迫的响应都起到重要的作用。保卫细胞能够通过感知胞内和胞外多种信号调节气孔开度,因此,保卫细胞已经成为植物细胞信号转导研究中广泛应用的细胞模型。该文对保卫细胞中微丝骨架和活性氧对气孔运动的调节作用、微丝骨架在调节细胞壁与质膜间联系中的作用进行了综述,最后分析了微丝骨架通过ROS(reactive oxygen species)调节保卫细胞壁–质膜联系参与气孔运动调控的可能机制。  相似文献   

5.
病原真菌在侵入植物细胞过程中,除了分泌化学物质外还通过物理挤压细胞产生力学作用.用压应力作为力学信号,研究了局部力学刺激对黄瓜系统抗病性的诱导.结果表明,力学刺激可以诱导黄瓜系统抗病性的产生.当细胞壁与质膜间的黏附被Arg-Gly-Asp(RGD)阻断后,力学刺激对黄瓜系统抗病性的诱导几乎完全被减除.通过薄层色谱和液相色谱分析,发现力学刺激可以使植保素含量明显增加.这表明黄瓜植保素的积累可能是力学刺激诱导其产生抗性的原因之一.而细胞壁与质膜间的黏附被RGD阻断后,力学刺激只能诱导植保素的部分积累.即力学刺激对植保素积累的诱导依赖于细胞膜与细胞壁间的黏附.  相似文献   

6.
植物叶片原生质体分离的可能机制   总被引:1,自引:1,他引:0  
分析了植物叶片在分离液环境中形成原生质体的过程,文中提出,分离液配方中的酸性物质使植物叶片处于酸性环境中并导致植物正常细胞首先发生细胞壁酸性降解,随后出现原生质体脱离细胞壁进入分离液,继而又进一步发生质膜的酸性降解,使细胞核和细胞器进入分离液中,最终分离液中的细胞器以细胞核为中心进行细胞器重组,最后产生外貌形态一致的新的原生质体。植物细胞壁和质膜是植物细胞的包被系统。植物细胞包被系统的酸性降解使植物细胞器重组并产生新的原生质体成为可能。  相似文献   

7.
<正> 根癌农杆菌感染双子叶植物时,能侵入双子叶植物的细胞壁,并通过一种未知机制将其Ti质粒DNA导入植物细胞内。导入的Ti质粒DNA(T-DNA)能整合到植物细胞的核基因组中,并被转录。通过遗传操作插入Ti质粒T区的任何DNA片段似乎都能随根癌农杆菌一起转移到植物细胞内。因此,根癌农杆菌作为载体,已广泛用于高等植物外源遗传物质的导入研究。它最终有可能给作物的基因组加入一些有益的遗传成分。遗憾的是,把Ti质粒用作转  相似文献   

8.
植物细胞壁是地球上最丰富的可再生资源,也是植物细胞区别于动物细胞的特殊结构之一,它与细胞质膜及细胞骨架共同构成了植物细胞表面的细胞壁-质膜-细胞骨架连续体.细胞壁为植物细胞提供外部支撑结构,细胞骨架则在细胞内构成内部网络支架结构.近年来,有关植物细胞骨架调控细胞壁形成的研究有了很大进展,本文从细胞骨架参与细胞壁物质膜泡运输、细胞骨架调控纤维素微纤丝沉积、细胞骨架调控次生细胞壁加厚以及细胞骨架参与细胞壁形成信号的调控等方面进行了阐述和总结,并对今后的研究方向进行了展望.  相似文献   

9.
Purdue大学的M.A.Horn等研究出将大分子导入完整大豆细胞的新方法.他们发现,此技术的优点在于通过细胞内吞作用摄入生物素.使生物素与牛胰岛素、牛核糖核酸酶、人血红蛋白或牛血清白蛋白结合,可将大量这类分子导入培养的大豆细胞而不破坏细胞.Ho-rn等指出此方法具有如下优点:(1)它不损伤细胞,(2)可用于完整细胞,(3)可导入大量大分子,(4)技术简单,适于各种用途.  相似文献   

10.
绝大多数植物细胞的质膜外都有细胞壁,这是区别予动物细胞的显著特征之一。由于细胞壁的存在,使原生质体的膨胀受到限制,细胞成熟后,使其形态和大小变为固定。细胞壁有保护作用,厚而硬的细胞壁还有支持植物器官的机械作用,同时,细胞壁能影响植物组织的吸收、蒸腾、运输和分泌等功能。  相似文献   

11.
在教学中,对于某些内容,细细推敲与比较,常发现彼此矛盾;有些内容,不同教本的提法有差别;有些内容,可能不妥或错漏,在此提出讨论与请教。一、关于“植物细胞是一个渗透系统的问题: 植物细胞壁是一个透性膜,它的原生质层(包括质膜、细胞质与液泡膜)是一个选择透性膜;液泡里的溶液中含有无机和有机的溶质,因此,当细胞与溶液环境在一起时,就构成一个类似物理学中的渗  相似文献   

12.
采用磷酸铅沉淀的细胞化学方法,对番茄子叶细胞内三磷酸腺苷酶(ATPase)活性进行了超微结构的定位,并研究了番茄幼苗在遭受冷害过程中 ATPase 活性的变化。结果指出:1.在28℃下萌发生长的番茄幼苗子叶细胞内的 ATPase 活性被定位于质膜、胞间连丝、核仁及核的染色质、叶绿体片层膜、部分细胞壁以及细胞间隙周围的细胞壁表面及其内含物上。2.当番茄幼苗遭受12小时冷(5℃)处理时,质膜、细胞壁及细胞间隙内的 ATPase 活性开始明显地降低,但细胞核和叶绿体片层膜上的 ATPase 仍保持高的活性反应。在冷处理24小时后,质膜与细胞壁的 ATPase 活性几乎完全丧失,而细胞核和叶绿体片层膜的 ATPase 活性仅开始减弱。这种情况揭示,冷害可能首先损伤细胞表面(质膜与壁)的 ATPase 活性。3.讨论了细胞间隙作为养料运输通道的作用以及冷害的一种可能过程与机理。关于高等植物细胞内三磷酸腺苷酶(ATPase)活性的细胞化学的超微结构定位,以往主要集中于维管束的韧皮部和根尖细胞的研究。不久前,我们报道了冬小麦分蘖节细胞内 ATPase 活性的细胞化学定位叫,初步揭示 ATPase 的活性变化与植物抗寒性有密切关系。番茄等喜温植物在冷害中的细胞超微结构,呼吸作用和一些酶(如过氧化物酶,过氧化氢酶及吲(口朶)乙酸氧化酶)活性的变化,已有一些报道,提出膜可能是冷害损伤的最初部位。然而冷害究竟首先是损伤膜的拟脂成分,还是损伤膜的蛋白质成分,或者是二者同时遭到破坏,目前的实验证据还十分缺乏。ATPase 是膜束缚的一种功能性蛋白质,我们试图通过探索它在寒害中的活性变化,为阐明寒害机理提供实验依据。  相似文献   

13.
冬小麦分蘖节细胞内的酸性磷酸酶活性在麦苗秋季的活跃生长时期,主要定位于液泡膜内侧和液泡内含物周围,核内染色质上,以及细胞间隙周围的细胞壁表面和细胞间隙的内含物上,到寒冬时期,除保持以上各部位的活性外,突出的变化是在质膜上以及质膜和细胞壁分离的间隙内产生该酶的高活性。作者认为,这可能是对植物在寒冬中细胞内水流到细胞外结冰,避免细胞内结冰伤害的一种适应。图版说明图1—2,秋季生长时期(10月20日)的分蘖节细胞。酶活性主要定位于液泡膜上和液泡内含物的周围、染色质以及细胞间隙周围的细胞壁表面和细胞间隙的内含物上。图1,×11500。图2,×10400。V:液泡。Vm:液泡膜。CH:染色质。PL:质膜。N:核仁。Pd:胞间连丝。Is:细胞间隙。W:细胞壁。图3—4,寒冬中(12月9日)的分蘖节细胞。液泡内侧和液泡内含物表面表现酸性磷酸酶的高活性;特别是质膜和细胞壁之间也呈现大量的反应产物。图3,×14400。图4,×12200。图5,仲冬(1月10日)固定的材料。在质膜以及质膜和细胞壁分离的间隙内,突出地显示出酶的高活性反应。图5,×8900。  相似文献   

14.
植物镉忍耐的分子机理   总被引:14,自引:4,他引:10  
Cd是植物非必需的微量元素,对植物有很强的毒性.Cd抑制植物细胞生长,抑制氧化磷酸化,引发氧化胁迫,影响光合作用,损伤核仁和影响质膜ATP酶的活力.一些耐Cd植物通过诱导形成螯合肽、金属硫蛋白、植物应激蛋白等抵御Cd毒,也有的耐Cd植物则通过细胞壁固定、液泡分隔、腺体分泌等途径来抵御Cd毒.植物螯合肽合成酶(PCS)相关的一些基因已得到克隆.金属硫蛋白(MT)的克隆基因导入植物,使植物对Cd毒的抗性增加;植物胁迫蛋白可提高植物对Cd毒的抗性,Zn转运蛋白可运转Cd.修饰基因则通过影响主要基因提高植物对Cd的忍耐能力.野生型植物耐Cd毒是多基因控制的,而植物短期的Cd忍耐,则仅受一个或少数基因控制.  相似文献   

15.
植物细胞壁研究进展   总被引:7,自引:0,他引:7  
植物细胞壁是一种复杂的网状结构,其成分包含纤维素、半纤维素、果胶和少量的结构蛋白等。在植物细胞生长过程中,细胞能产生伸展素蛋白,打断纤维素和半纤维素之间的氢键,引起细胞膨压驱动的细胞壁扩张。成熟细胞壁扩张性的丧失是由于细胞壁硬化作用而对扩张性蛋白的作用不敏感造成的,细胞壁成熟过程中很多不同的连接会同时发生,当细胞壁基质多聚体分子之间的连接增加到一定的程度。细胞壁的伸长就会被完全抑制。  相似文献   

16.
超声诱导基因转移   总被引:9,自引:0,他引:9  
植物基因工程的关键技术之一,是把外源基因导入植物细胞.目前,植物细胞的基因转移方法有:(1)农杆菌Ti或Ri质粒载体法;(2)病毒载体法;(3)磷酸钙核酸沉淀吸收法;(4)PEG介导DNA直接转移法;(5)脂质体载体法;(6)显微注射法;(7)电激基团转移法:(8)基因枪喷射法;(9)激光微束法等.前两种方法是以生物体作为载体介导基因转移,属生物方法中间三种方法是以化学药物介导基因转移.属化学方法;后四种是以物理手段介导基因转(?)属物理方法.由于物理方法操作比较简单,不受宿主范围的限,因此近年(?)发展迅速.  相似文献   

17.
利用纳米材料介导的药物靶向治疗和动物细胞转基因等相关研究,日益受到人们的关注.但植物因存在细胞壁的障碍,无论原位还是离体细胞培养条件下,利用纳米技术进行基因转移均存在很大难度.因此设想,如通过纳米颗粒材料物理尺寸的改变和表面化学修饰,能改变纳米颗粒与植物细胞壁界面上的生物物理或生物化学特征,从而有利于纳米颗粒材料穿越植物细胞壁进入植物细胞,将对推动纳米技术在植物转基因领域中的应用产生重要意义.根据以上设想,研究了不同的共孵育时间和温度等条件下,杂交鹅掌楸的胚性悬浮细胞与经不同表面化学修饰的CdSe/ZnS纳米颗粒之间相互作用过程的细胞生物学特征,以及CdSe/ZnS量子点的细胞毒性.结果表明,在共孵育后3h以内,激光共聚焦显微镜和电子扫描显微镜下,均可观察到经表面后修饰带正电荷的CdSe/ZnS纳米颗粒.同时,胞吞进入细胞内部的表面携带正电荷的CdSe/ZnS纳米颗粒的量明显与共培养时间、温度有明显的依赖关系,表明它们可以通过细胞的液相胞吞作用进入杂交鹅掌楸细胞内,且不影响细胞的活性;而表面带负电荷的CdSe/ZnS纳米颗粒则主要聚集在细胞外壁附近.在培养溶液中添加20%(质量比)聚乙二醇,可进一步提高鹅掌楸细胞胞吞CdSe/ZnS纳米颗粒的量和减轻CdSe/ZnS纳米颗粒的细胞毒性.本研究表明,以表面携带正电荷的CdSe/ZnS量子点纳米材料作为基因载体,在植物悬浮细胞的转基因研究和应用中具有广泛的前景.  相似文献   

18.
通过组织化学染色、电镜观察、酶活性分析对水分胁迫诱导玉米叶片质外体产生H2O2进行了研究。结果表明:水分胁迫能够诱导玉米叶片内源ABA的积累,ABA参与了水分胁迫诱导的玉米叶片H2O2的产生,质膜NADPH氧化酶、细胞壁过氧化物酶(POD)以及质外体多胺氧化酶(PAO)是水分胁迫诱导玉米细胞在质外体产生H2O2的来源,其中质膜NADPH氧化酶是主要来源;内源ABA的积累参与了水分胁迫激活的质膜NADPH氧化酶、细胞壁POD和质外体PAO活性的提高。研究认为,水分胁迫诱导玉米细胞在质外体产生H2O2可能是由于水分胁迫下内源ABA的积累通过激活质膜NADPH氧化酶、细胞壁POD以及质外体PAO的活性而实现的。  相似文献   

19.
王秀玲  高新起 《广西植物》2002,22(3):242-245
西瓜胚乳细胞衰退过程中 ,质膜、液泡膜突起、形成体积较大的囊泡 ,内质网断裂形成体积较小的囊泡 ;细胞质和细胞核降解形成电子致密的碎片沿细胞壁分布 ;细胞壁在衰退过程逐渐变薄 ,由于部分区域分解而使整个壁呈波浪型 ,细胞降解后的物质可直接穿越薄壁处或通过宽约 5 0 nm的胞间连丝向近胚端的胚乳细胞转移。胚乳与珠心组织分界壁 -胚囊壁上有发达的壁内突 ,有利于珠心组织内的物质向胚乳内转运 ;胚乳发育早期与胚共有的壁上内外两侧均有胼胝质沉积 ,壁上无外连丝型的胞间连丝存在 ,胚乳发育后期共有壁上的胼胝质消失 ,胚乳细胞降解物可穿越共有壁进入胚细胞内。实验结果表明西瓜胚乳在发育后期对胚的发育具有重要的作用。  相似文献   

20.
环境大气臭氧污染对植物的影响(二)   总被引:1,自引:0,他引:1  
(一) 急性影响在O_3暴露下,O_3是在植物的叶片与环境大气进行正常的气体交换时,通过开放着的气孔而进入叶片,并溶解在叶的组织液中,经浓度梯度而扩散的。而且,气孔是O_3进入叶组织的主要途径,通过吸咐于叶表皮并经角质层进入叶肉细胞而扩散的O_3的数量是可以忽略的。O_3或其中间物(例如OH基团)一旦进入气孔下室,便首先侵犯周围组织的纤维素细胞壁。虽未证明纤维素可遭受这种强氧化剂的毒害,但已知O_3确实可破坏细胞质膜蛋白质和脂类的巯基和脂键,使质膜上水和离子的通透性遭受影响,细胞的整合性丧失,从而导致细胞的内含物泄漏入胞间腔隙。此时叶片的受害区呈暗绿色或水渍状。这是O_3对叶片毒害最早的可见症状。数小时后,O_3穿过质膜进入细胞器首先是  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号