首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The parasitoids known to attack 191 phytophagous species of gall midges (Cecidomyiidae) were used to examine factors influencing parasitoid assemblage size. The number of parasitoid species a midge species supports was tested against nine variables describing geographical, biological and ecological attributes of hosts. The apparency of midge larvae was found to have the greatest influence on parasitoid assemblage size; highly visible species support more parasitoids than less visible ones. Pupation site and midge voltinism also significantly affect associated parasitoids, at least for highly apparent hosts. Biogeographic region, host-plant architecture and the plant parts infested were found to be of secondary importance. The surface texture of infested plant parts, the number of midge larvae occupying galls and the diversity of plant tissues infested have minimal apparent effects on parasitoid richness. Parasitoid assemblage size and total parasitism rates were also found to be positively correlated for 73 galling and nongalling midge species, and gallers typically suffer higher levels of parasitism than non-gallers. Using these data to test the enemy hypothesis, which proposes that the galling habit has evolved to escape attack from parasitoids, we conclude that parasitoid pressure cannot account for the presence of galls in the Cecidomyiidae.  相似文献   

2.
For most organisms, patterns of natural enemy‐mediated mortality change over the course of development. Shifts in enemy pressure are particularly relevant for organisms that exhibit exponential growth during development, such as juvenile insects that increase their mass by several orders of magnitude. As one of the dominant groups of insect herbivores in most terrestrial plant communities, larval lepidopterans (caterpillars) are host to a diverse array of parasitoids. Previous research has described how the frequency of herbivore parasitism varies among host plants or habitats, but much less is known about how parasitism pressure changes during host development. To test whether the two major parasitoid taxa, wasps and flies, differentially attack shared hosts based on host developmental stage, we simultaneously exposed early‐ and late‐instar Euclea delphinii Boisduval (Lepidoptera: Limacodidae) caterpillars to parasitism in the field. We found strong evidence that parasitoids partition hosts by size; adult female wasps preferentially parasitized small caterpillars, whereas adult female flies preferred to attack large caterpillars. Our results demonstrate that host ontogeny is a major determinant of parasitoid host selection. Documenting how shifts in enemy pressure vary with development is important to understanding both the population biology and evolutionary ecology of prey species and their enemies.  相似文献   

3.
Summary We tested the Enemy Impact Hypothesis, which predicts that communities of one tropic level are organized by the tropic level above. In the case of gallforming insect communities, the hypothesis predicts that gall morphology will diverge, minimizing the number of parasitoids shared among species. We used the monophyletic group of gallforming cecidomyiids (Asphondylia spp.) on creosote bush (Larrea tridentata) to test this hypothesis, predicting that species with thicker gall walls should exclude species of parasitoids with shorter ovipositors and have lower levels of parasitism. Of 17 parasitoid species reared from Asphondylia galls on creosote bush, 9 accounted for over 98% of parasitism. Seven of these 9 species had ovipositors long enough to penetrate 10 of 13 gall morphs measured. There was no significant relationship between gall wall thickness and number of associated parasitoid species (r 2=0.01, P>0.05, n=13). There was no relationship between gall wall thickness and types of parasitoid species colonizing galls: parasitoids with the shortest ovipositors colonized all types of gall morphs and were dominant members of the parasitoid assemblages in galls with the thickest walls. Ultimately, there were no significant differences in percent parasitism among Asphondylia species, regardless of gall wall thickness. We found no difference in numbers of associated parasitoids or percent parasitism in galls with different textures (e.g. hairy versus smooth), different locations on the plant or different phenologies. Our results suggest that enemy impact has not influenced the diversity of this gall community. Gall wall thickness, phenology, location on the plant and surface structure do not appear to influence the distribution of parasitoid species. Other explanations are offered to account for diversity in gall morphology among these species.  相似文献   

4.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

5.
Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies.Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the “Enemy Hypothesis,” which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts'' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.  相似文献   

6.

Aim

As species' ranges shift poleward in response to anthropogenic change, they may lose antagonistic interactions if they move into less diverse communities, fail to interact with novel populations or species effectively, or if ancestral interacting populations or species fail to shift synchronously. We leveraged a poleward range expansion in a tractable insect host–enemy community to uncover mechanisms by which altered antagonistic interactions between native and recipient communities contributed to ‘high niche opportunities’ (limited biotic resistance) for a range-expanding insect.

Location

North America, Pacific Northwest.

Methods

We created quantitative insect host–enemy interaction networks by sampling oak gall wasps on 400 trees of a dominant oak species in the native and expanded range of a range-expanding gall wasp species. We compared host–enemy network structure between regions. We measured traits (phenology, morphology) of galls and interacting parasitoids, predicting greater trait divergence in the expanded range. We measured function relating to host control and explored if altered interactions and traits contributed to reduced function, or biotic resistance.

Results

Interaction networks had fewer species in the expanded range and lower complementarity of parasitoid assemblages among host species. While networks were more generalized, interactions with the range-expanding species were more specialized in the expanded range. Specialist enemies effectively tracked the range-expanding host, and there was reduced apparent competition with co-occurring hosts by shared generalist enemies. Phenological divergence of enemy assemblages interacting with the range-expanding and co-occurring hosts was greater in the expanded range, potentially contributing to weak apparent competition. Biotic resistance was lower in the expanded range, where fewer parasitoids emerged from galls of the range-expanding host.

Main Conclusions

Changes in interactions with generalist enemies created high niche opportunities, and limited biotic resistance, suggesting weak apparent competition may be a mechanism of enemy release for range-expanding insects embedded within generalist enemy networks.  相似文献   

7.
Diversity, function and stability in parasitoid communities   总被引:4,自引:1,他引:3  
The parasitoid assemblages associated with grass-feeding chalcid wasps in Great Britain were used to examine the relationships between diversity (species richness), community function (total parasitism rate) and stability (variability in parasitism rate over time). Species-rich communities did not generate higher parasitism rates than species-poor communities, nor was temporal variation of parasitism rates related to parasitoid community richness. The mechanisms underlying hypotheses linking species richness and community function and stability are discussed in the light of these results. Because all parasitoid species represent a single functional group, a lack of complementarity in the ways they use their resources may explain why diversity is not linked to function or community stability. A second likely reason is that these parasitoid communities are under bottom-up control, thus exerting little or no influence on total system function and variability. This is likely to be common in parasitoid communities.  相似文献   

8.
Understanding the dynamics of potential inter- and intraspecific competition in parasitoid communities is crucial in the screening of efficient parasitoid species and for utilization of the best parasitoid species combinations. In this respect, the host-parasitoid systems, Bemisia tabaci and two parasitoids, Eretmocerus hayati (exotic) and Encarsia sophia (existing) were studied under laboratory conditions to investigate whether interference competition between the exotic and existing species occurs as well as the influence of potential interference competition on the suppression of the host B. tabaci. Studies on interspecific-, intraspecific- and self-interference competition in two parasitoid species were conducted under both rich and limited host resource conditions. Results showed that (1) both parasitoid species negatively affect the progeny production of the other under both rich and limited host resource conditions; (2) both parasitoid species interfered intraspecifically on conspecific parasitized hosts when the available hosts are scarce and; 3) the mortality of B. tabaci induced by parasitoids via parasitism, host-feeding or both parasitism and host-feeding together varied among treatments under different host resource conditions, but showed promise for optimizing control strategies. As a result of our current findings, we suggest a need to investigate the interactions between the two parasitoids on continuous generations.  相似文献   

9.
Plant–herbivore–parasitoid interactions are a common occurrence in terrestrial food webs. Few parasitoids are thought to be shared by host insects of different feeding guilds because different parasitism strategies are required to use hosts of different feeding types. However, this assumption has rarely been tested using data from nature. To clarify whether parasitoids are shared among host guilds, I examined the structure of parasitoid communities on herbivore guilds associated with two Rhododendron species (Ericaceae) in a temperate secondary forest in central Japan. Leaf- and flower-feeding insects were collected from Rhododendron reticulatum and Rhododendron macrosepalum shrubs and reared in the laboratory for 3 years from April 1999 to March 2002. In total, 79 species of holometabolous herbivores (Lepidoptera, Diptera, Coleoptera, and Hymenoptera) were recorded, with 62 species on R. reticulatum and 51 species on R. macrosepalum. A total of 81 parasitoid species (Hymenoptera and Diptera) was recorded from the sampled herbivores, with 48 species from those on R. reticulatum and 50 species from those on R. macrosepalum. In total, 36 herbivore species were parasitised by 1–18 parasitoid species per host species, although the number of parasitoid species was strongly affected by sample size. Parasitoids that had two or more host species frequently attacked herbivore species from different families or on different host plants, whereas they did not attack species from different herbivore guilds; no parasitoids were shared between external feeders and rollers. Therefore, my results support the hypothesis that few parasitoids are shared among herbivores of different feeding guilds.  相似文献   

10.
We studied survival, mortality factors, and community structure of nine species of leaf-galling sawflies, Eupontania spp., living on ten willow species (Salix spp.) at six sites on the Russian arctic tundra. The sawfly species represented two different gall types: the viminalis-type, which forms pea-shaped galls on the underside of leaf blades, and the vesicator-type, which forms bean-shaped galls on both sides of the leaf blade. Gall communities in the northernmost site had only one parasitoid species, but up to six parasitoids were found at the southernmost site. Inquiline parasitoids were encountered only in the two southern sites. Survival of the larvae varied between 20.0 and 82.8% among galler species at different sites. Parasitoids were the most important mortality factor for the sawflies. They caused mortality of 7.8-65.4%, depending on galler species and site, and it was highest in the northernmost site. Plant-specific mortality varied from 1.7 to 28.4% by galler species and it tended to decrease towards the north. Mortality from parasitoids was greater in the vesicator-type gallers than in the viminalis-type gallers. The total mortality caused by parasitoids in the arctic communities does not appear to differ from that in the diverse southern communities of Eupontania in Middle Europe, Scandinavia and North America, despite the assemblage having only a few members in the Arctic. The largest difference between the southern and the northern communities was the lack of inquiline parasitoids in the north. Our data do not support the hypothesis that abiotic, rather than biotic, factors would be more important in determining the abundance of populations of herbivorous insects in the harsh arctic environment.  相似文献   

11.
Predation on parasitized hosts can significantly affect natural enemy communities, and such intraguild predation may indirectly affect control of herbivore populations. However, the methodological challenges for studying these often complex trophic interactions are formidable. Here, we evaluate a DNA-based approach to track parasitism and predation on parasitized hosts in model herbivore-parasitoid-predator systems. Using singleplex polymerase chain reaction (SP-PCR) to target mtDNA of the parasitoid only, and multiplex PCR (MP-PCR) to additionally target host DNA as an internal amplification control, we found that detection of DNA from the parasitoid, Lysiphlebus testaceipes, in its aphid host, Aphis fabae, was possible as early as 5 min. post parasitism. Up to 24 h post parasitism SP-PCR proved to be more sensitive than MP-PCR in amplifying parasitoid DNA. In the carabid beetles Demetrias atricapillus and Erigone sp. spiders, fed with aphids containing five-day-old parasitoids, parasitoid and aphid DNA were equally detectable in both predator groups. However, when hosts containing two-day-old parasitoids were fed to the predators, detection of parasitoid prey was possible only at 0 h (immediately after consumption) and up to 8 h post consumption in carabids and spiders, respectively. Over longer periods of time, post-feeding prey detection success was significantly higher in spiders than in carabid beetles. MP-PCR, in which parasitoid and aphid DNA were simultaneously amplified, proved to be less sensitive at amplifying prey DNA than SP-PCR. In conclusion, our study demonstrates that PCR-based parasitoid and prey detection offers an exciting approach to further our understanding of host-parasitoid-predator interactions.  相似文献   

12.
闭弯尾姬蜂与菜蛾盘绒茧蜂寄生菜蛾幼虫时的种间竞争   总被引:5,自引:1,他引:4  
在室内25℃下,以菜蛾3龄初幼虫作寄主,研究了菜蛾盘绒茧蜂Cotesia plutellae和半闭弯尾姬蜂Diadegma semiclausum的种间竞争。当寄主供2种蜂同时产卵寄生时,2种蜂各自的寄生率与其单独寄生时无显著差异,合计寄生率比一种蜂单独存在时有所提高,但差异不显著。2种蜂均能产卵寄生已被另一种蜂寄生了的寄主幼虫。当寄主被2种蜂寄生的间隔时间很短(少于10 h)时,所育出的蜂绝大部分(80%以上)为绒茧蜂;当寄主先被绒茧蜂寄生,并饲养2天以上再供弯尾姬蜂寄生时,所育出的全为绒茧蜂;当寄主先被弯尾姬蜂寄生,并饲养2天以上再供绒茧蜂寄生时,寄主幼虫绝大部分不能存活,只有少部分能育出寄生蜂,且多为弯尾姬蜂。当2种蜂的幼虫存在于同一寄主体内时,2种蜂的发育均受到另一种蜂的抑制;绒茧蜂1龄幼虫具有物理攻击能力,能将弯尾姬蜂卵或幼虫致死。这些结果表明,菜蛾盘绒茧蜂与半闭弯尾姬蜂在同一寄主中发育时,前者具有明显的竞争优势。  相似文献   

13.
The processes maintaining the enormous diversity of herbivore—parasitoid food webs depend on parasitism rate and parasitoid host specificity. The two parameters have to be evaluated in concert to make conclusions about the importance of parasitoids as natural enemies and guide biological control. We document parasitism rate and host specificity in a highly diverse caterpillar-parasitoid food web encompassing 266 species of lepidopteran hosts and 172 species of hymenopteran or dipteran parasitoids from a lowland tropical forest in Papua New Guinea. We found that semi-concealed hosts (leaf rollers and leaf tiers) represented 84 % of all caterpillars, suffered a higher parasitism rate than exposed caterpillars (12 vs. 5 %) and their parasitoids were also more host specific. Semi-concealed hosts may therefore be generally more amenable to biological control by parasitoids than exposed ones. Parasitoid host specificity was highest in Braconidae, lower in Diptera: Tachinidae, and, unexpectedly, the lowest in Ichneumonidae. This result challenges the long-standing view of low host specificity in caterpillar-attacking Tachinidae and suggests higher suitability of Braconidae and lower suitability of Ichneumonidae for biological control of caterpillars. Semi-concealed hosts and their parasitoids are the largest, yet understudied component of caterpillar—parasitoid food webs. However, they still remain much closer in parasitism patterns to exposed hosts than to what literature reports on fully concealed leaf miners. Specifically, semi-concealed hosts keep an equally low share of idiobionts (2 %) as exposed caterpillars.  相似文献   

14.
Abstract.
  • 1 Rapid and substantial changes have occurred in the parasitoid and inquiline community associated with the agamic galls of Andricus quercuscalicis since it invaded Britain in the late 1950s. The number of parasitoid and inquiline species has risen from one to thirteen over a 15-year period. Although the number of species has been relatively consistent over the last 8 years, the species composition has changed considerably and in a highly characteristic way during this period.
  • 2 The parasitoid complex can be divided into two broadly distinct sets of parasitoid species; one set attacks only the gall former whereas the other set concentrates on the inquilines living in the wall of the gall.
  • 3 The most dramatic change, however, is in the abundance of inquilines which were reported to be virtually absent in earlier studies on this community in Britain. Over a period of only 5 years, between 1988 and 1993, inquiline attack rose from less than 0.01 to an average of 0.26 inquilines per gall. The intensity of inquiline attack is geographically heterogenous, with high inquiline numbers restricted to south-east England. Because of the relatively high specificity of the parasitoids, high inquiline abundance is positively correlated with parasitoid species richness in knopper galls.
  • 4 Parasitism rates, particularly on the gall former, were generally low (<10%). Over the last 5 years, however, seven parasitoid species have been consistently recorded and the mortality caused by these species has increased continuously. The species composition of the community associated with this alien gall wasp in Britain has quickly converged to the community known from its native range in continental Europe. Parasitoid species known to attack the galls of A.quercuscalisis on the continent have been recorded from it in Britain for the first time mainly in areas where inquilines have recently become abundant.
  • 5 Since rates of parasitism of the gall former are still low, parasitoids are unlikely to play a major role in the population dynamics of this invading gall wasp at present, but the rapidly increasing inquiline and parasitoid attack could be a source of increased mortality for native cynipid species which are the alternative hosts of those parasitoid species.
  相似文献   

15.
We examine the effects of fecundity‐limited attack rates and resistance of hosts to parasitism on the dynamics of two‐host–one‐parasitoid systems. We focus primarily on the situation where one parasitoid species attacks two host species that differ in their suitability for parasitism. While all eggs allocated to suitable hosts develop into adult parasitoids, some of the eggs allocated to marginal host do not develop. Marginal hosts can therefore act as a sink for parasitoid eggs. Three‐species coexistence is favoured by low levels of parasitoid fecundity and by low levels of suitability of the marginal host. Our model also produces an indirect (+, ?) interaction in which the suitable host can benefit from the presence of the marginal host, but the marginal host suffers from the presence of the suitable host. The mechanism driving the indirect (+, ?) interaction is egg limitation of parasitoids incurred by allocating eggs to marginal hosts.  相似文献   

16.
Abstract:  Interspecific competition between Diadegma semiclausum and Cotesia plutellae was investigated at 25°C in the laboratory, by exposing the third instar larvae of the diamondback moth, Plutella xylostella to both species together, either species alone or by exposing the host larvae already parasitized by one species, at different intervals, to the other. When host larvae were exposed simultaneously to two species in one arena, parasitism rates of the host by each species were not reduced by the presence of the other species; joint parasitism rate by two species was not significantly higher than that by either parasitoid alone. Both parasitoids could lay eggs into the host larvae which had previously been parasitized by the other species, leading to the occurrence of multiparasitized hosts. When host larvae were parasitized first by D. semiclausum and then being followed within 1–2 h by exposing to C. plutellae , or vice versa, ensuing parasitoid cocoons from the multiparasitized host larvae were nearly all C. plutellae . When host larvae were parasitized initially by C. plutellae and then being followed by D. semiclausum two or more days later, all parasitoids ensued from the multiparasitized hosts were C. plutellae . In contrast, when host larvae were parasitized initially by D. semiclausum and then being followed by C. plutellae two or more days later, most host larvae could not survive to prepupae and most of the ensuing parasitoid adults from the surviving hosts were D. semiclausum . Dissections of host larvae at various time intervals after parasitization by the two parasitoids showed that development of both parasitoids in multiparasitized hosts were somewhat arrested, and that the first instar larvae of C. plutellae could initiate a physical attack on the larvae of D. semiclausum and remove the latter.  相似文献   

17.
Island communities are exposed to several evolutionary and ecological processes that lead to changes in their diversity and structure compared to mainland biotas. These phenomena have been observed for various taxa but not for parasitoids, a key group in terms of community diversity and functioning. Here we use the parasitoid communities associated with the moth Acroclita subsequana (Lepidoptera: Tortricidae) in the Macaronesian region, to test whether species richness differs between islands and mainland, and whether island parasitoid faunas are biased towards generalist species. Host larvae were collected on several islands and adjacent mainland, carefully searched for ectoparasitoid larvae and dissected to recover any endoparasitoids. Parasitoids were classified as idiobionts, which usually have a wide host range (i.e. generalists), or koinobionts that are considered specialists. Mainland species richness was lower than expected by chance, with most of the species being koinobionts. On the other hand, island communities showed a greater proportion of idiobiont species. Overall parasitism rates were similar between islands and mainland, but islands had higher rates of parasitism by idiobionts than expected by chance, and mainland areas showed the highest koinobiont parasitism rates. These results suggest that island parasitoid communities are dominated by generalists, in comparison to mainland communities. Several hypotheses may explain this pattern: (1) generalist parasitoids might have better dispersal abilities; (2) they may be less constrained by ‘sequential dependencies’; and (3) island parasitoids probably have fewer competitors and/or predators, thus favouring the establishment of generalists. New studies including multiple hosts, other habitats, and/or more islands are necessary to identify which of these processes shape island parasitoid communities.  相似文献   

18.
Summary Data from two host-parasitoid communities were analyzed to ascertain whether patch scale affected the kinds of correlations existing between 1) spatial differences in host density and the intensity of parasitism (density-dependence) and 2) number of species of parasitoids and the intensity of parasitism (species-dependence). We concluded that parasitization rates are usually independent of both host density and number of parasitoid species present regardless of patch scale. Therefore, the responses of parasitoids to host density and the addition of parasitoid species to a community are equally unpredictable in outcome.  相似文献   

19.
Communities of insect herbivores are thought to be structured mainly by indirect processes mediated by shared natural enemies, such as apparent competition. In host–parasitoid interaction networks, overlap in natural enemy communities between any pair of host species depends on the realized niches of parasitoids, which ultimately depend on the foraging decisions of individuals. Optimal foraging theory predicts that egg-limited parasitoid females should reject small hosts in favour of future opportunities to oviposit in larger hosts, while time-limited parasitoids are expected to optimize oviposition rate regardless of host size. The degree to which parasitoids are time- or egg-limited depends in part on weather conditions, as this determines the proportion of an individual''s lifespan that is available to foraging. Using a 10-year time series of monthly quantitative host–parasitoid webs, we present evidence for host-size-based electivity and sex allocation in the common secondary parasitoid Asaphes vulgaris. We argue that this electivity leads to body-size-dependent asymmetry in apparent competition among hosts and we discuss how changing weather patterns, as a result of climate change, may impact foraging behaviour and thereby the size-structure and dynamics of host–parasitoid indirect interaction networks.  相似文献   

20.
In this study we investigated the potential importance of species identity and herbivore feeding mode in determining the strengths of top-down and bottom-up effects on phytophagous insect densities. In 1998, we conducted two factorial field experiments in which we manipulated host plant quality and intensity of parasitoid attack on three salt marsh herbivores, the planthoppers Prokelisia marginata and Pissonotus quadripustulatus (Homoptera: Delphacidae), which feed only on Spartina alterniflora and Borrichia frutescens, respectively, and the gall fly Asphondylia borrichiae (Diptera: Cecidomyiidae), which feeds only on B. frutescens. We increased plant quality through addition of nitrogen fertilizer, and decreased parasitism by trapping hymenopteran parasitoids continuously throughout the study. Herbivore densities were censused biweekly. Increasing plant quality through fertilization increased the density of all three herbivores within 2 weeks of treatment application, and higher densities were maintained for the duration of the study. Reduction of top-down pressure had no effect on either planthopper species, possibly because of compensatory mortality affecting the two species. In contrast, reduction of parasitism significantly increased the density of A. borrichiae galls, perhaps because development within gall tissue reduces the sources of compensatory mortality affecting this species. The results of this study show that the bottom-up effects of plant quality were strong and consistent for all three species, but the strength of top-down effects differed between the two feeding guilds. Thus, even for herbivores feeding on the same host plant, conclusions drawn regarding the relative importance of top-down and bottom-up effects may vary depending upon the feeding mode of the herbivore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号