首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

2.

Background  

Biological invasions provide a window on the process of community assembly. In particular, tracking natural enemy recruitment to invading hosts can reveal the relative roles of co-evolution (including local adaptation) and ecological sorting. We use molecular data to examine colonisation of northern Europe by the parasitoid Megastigmus stigmatizans following invasions of its herbivorous oak gallwasp hosts from the Balkans. Local host adaptation predicts that invading gallwasp populations will have been tracked primarily by sympatric Balkan populations of M. stigmatizans (Host Pursuit Hypothesis). Alternatively, ecological sorting allows parasitoid recruitment from geographically distinct populations with no recent experience of the invading hosts (Host Shift Hypothesis). Finally, we test for long-term persistence of parasitoids introduced via human trade of their hosts' galls (Introduction Hypothesis).  相似文献   

3.

Aim

As species' ranges shift poleward in response to anthropogenic change, they may lose antagonistic interactions if they move into less diverse communities, fail to interact with novel populations or species effectively, or if ancestral interacting populations or species fail to shift synchronously. We leveraged a poleward range expansion in a tractable insect host–enemy community to uncover mechanisms by which altered antagonistic interactions between native and recipient communities contributed to ‘high niche opportunities’ (limited biotic resistance) for a range-expanding insect.

Location

North America, Pacific Northwest.

Methods

We created quantitative insect host–enemy interaction networks by sampling oak gall wasps on 400 trees of a dominant oak species in the native and expanded range of a range-expanding gall wasp species. We compared host–enemy network structure between regions. We measured traits (phenology, morphology) of galls and interacting parasitoids, predicting greater trait divergence in the expanded range. We measured function relating to host control and explored if altered interactions and traits contributed to reduced function, or biotic resistance.

Results

Interaction networks had fewer species in the expanded range and lower complementarity of parasitoid assemblages among host species. While networks were more generalized, interactions with the range-expanding species were more specialized in the expanded range. Specialist enemies effectively tracked the range-expanding host, and there was reduced apparent competition with co-occurring hosts by shared generalist enemies. Phenological divergence of enemy assemblages interacting with the range-expanding and co-occurring hosts was greater in the expanded range, potentially contributing to weak apparent competition. Biotic resistance was lower in the expanded range, where fewer parasitoids emerged from galls of the range-expanding host.

Main Conclusions

Changes in interactions with generalist enemies created high niche opportunities, and limited biotic resistance, suggesting weak apparent competition may be a mechanism of enemy release for range-expanding insects embedded within generalist enemy networks.  相似文献   

4.
Summary We tested the Enemy Impact Hypothesis, which predicts that communities of one tropic level are organized by the tropic level above. In the case of gallforming insect communities, the hypothesis predicts that gall morphology will diverge, minimizing the number of parasitoids shared among species. We used the monophyletic group of gallforming cecidomyiids (Asphondylia spp.) on creosote bush (Larrea tridentata) to test this hypothesis, predicting that species with thicker gall walls should exclude species of parasitoids with shorter ovipositors and have lower levels of parasitism. Of 17 parasitoid species reared from Asphondylia galls on creosote bush, 9 accounted for over 98% of parasitism. Seven of these 9 species had ovipositors long enough to penetrate 10 of 13 gall morphs measured. There was no significant relationship between gall wall thickness and number of associated parasitoid species (r 2=0.01, P>0.05, n=13). There was no relationship between gall wall thickness and types of parasitoid species colonizing galls: parasitoids with the shortest ovipositors colonized all types of gall morphs and were dominant members of the parasitoid assemblages in galls with the thickest walls. Ultimately, there were no significant differences in percent parasitism among Asphondylia species, regardless of gall wall thickness. We found no difference in numbers of associated parasitoids or percent parasitism in galls with different textures (e.g. hairy versus smooth), different locations on the plant or different phenologies. Our results suggest that enemy impact has not influenced the diversity of this gall community. Gall wall thickness, phenology, location on the plant and surface structure do not appear to influence the distribution of parasitoid species. Other explanations are offered to account for diversity in gall morphology among these species.  相似文献   

5.
Galls are highly specialized plant tissues whose development is induced by another organism. The most complex and diverse galls are those induced on oak trees by gallwasps (Hymenoptera: Cynipidae: Cynipini), each species inducing a characteristic gall structure. Debate continues over the possible adaptive significance of gall structural traits; some protect the gall inducer from attack by natural enemies, although the adaptive significance of others remains undemonstrated. Several gall traits are shared by groups of oak gallwasp species. It remains unknown whether shared traits represent (i) limited divergence from a shared ancestral gall form, or (ii) multiple cases of independent evolution. Here we map gall character states onto a molecular phylogeny of the oak cynipid genus Andricus, and demonstrate three features of the evolution of gall structure: (i) closely related species generally induce galls of similar structure; (ii) despite this general pattern, closely related species can induce markedly different galls; and (iii) several gall traits (the presence of many larval chambers in a single gall structure, surface resins, surface spines and internal air spaces) of demonstrated or suggested adaptive value to the gallwasp have evolved repeatedly. We discuss these results in the light of existing hypotheses on the adaptive significance of gall structure.  相似文献   

6.
Little is known about the evolutionary history of most complex multi‐trophic insect communities. Widespread species from different trophic levels might evolve in parallel, showing similar spatial patterns and either congruent temporal patterns (Contemporary Host‐tracking) or later divergence in higher trophic levels (Delayed Host‐tracking). Alternatively, host shifts by natural enemies among communities centred on different host resources could disrupt any common community phylogeographic pattern. We examined these alternative models using two Megastigmus parasitoid morphospecies associated with oak cynipid galls sampled throughout their Western Palaearctic distributions. Based on existing host cynipid data, a parallel evolution model predicts that eastern regions of the Western Palaearctic should contain ancestral populations with range expansions across Europe about 1.6 million years ago and deeper species‐level divergence at both 8–9 and 4–5 million years ago. Sequence data from mitochondrial cytochrome b and multiple nuclear genes showed similar phylogenetic patterns and revealed cryptic genetic species within both morphospecies, indicating greater diversity in these communities than previously thought. Phylogeographic divergence was apparent in most cryptic species between relatively stable, diverse, putatively ancestral populations in Asia Minor and the Middle East, and genetically depauperate, rapidly expanding populations in Europe, paralleling patterns in host gallwasp species. Mitochondrial and nuclear data also suggested that Europe may have been colonized multiple times from eastern source populations since the late Miocene. Temporal patterns of lineage divergence were congruent within and across trophic levels, supporting the Contemporary Host‐tracking Hypothesis for community evolution.  相似文献   

7.
Plant galls are preyed upon by a diverse group of parasitoids and inquilines, which utilize the gall, often at the cost of the gall inducer. This community of insects has been poorly described for most cynipid-induced galls on oaks in North America, despite the diversity of these galls. This study describes the natural history of a common oak apple gall (Andricus quercuscalifornicus [Cynipidae]) and its parasitoid and inquiline community. We surveyed the abundance and phenology of members of the insect community emerging from 1234 oak apple galls collected in California’s Central Valley and found that composition of the insect community varied with galls of different size, phenology, and location. The gall maker, A. quercuscalifornicus, most often reached maturity in larger galls that developed later in the season. The parasitoid Torymus californicus [Torymidae] was associated with smaller galls, and galls that developed late in the summer. The most common parasitoid, Baryscapus gigas [Eulophidae], was more abundant in galls that developed late in the summer, though the percentage of galls attacked remained constant throughout the season. A lepidopteran inquiline of the gall (Cydia latiferreana [Tortricidae] and its hymenopteran parasitoid (Bassus nucicola [Braconidae]) were associated with galls that developed early in the summer. Parasitoids and inquilines, in general, had a longer emergence period and diapause within the gall than the gall-inducer. The association of different parasite species with galls of different size and phenology suggests that different parasite species utilize galls with slight differences in traits.  相似文献   

8.
The knopper gallwasp Andricus quercuscalicis Burgsdorf 1783 (Hymenoptera: Cynipidae) has invaded western and northern Europe from southern and eastern Europe over the last 400 years. A. quercuscalicis has two alternating generations, which differ in phenology, structure, and host oak species. This study describes geographic variation in the community in the tiny catkin galls of the sexual generation on Turkey oak, Quercus cerris, and compares the patterns obtained with those in the community attacking the alternate agamic generation. As predicted from considerations of parasitoid recruitment to the communities of invading phytophagous insects (Cornell and Hawkins 1993), in its native range the sexual generation shows (1) higher parasitoid community species richness, (2) higher total mortality due to parasitoid attack and (3) a higher ratio of specialist to generalist parasitoid species than is evident in the invaded range. Counter to predictions, there is no indication that parasitoid community richness in the invaded range has increased with time since the arrival of the new host. Higher host mortality in the native range is due principally to a single specialist, Aulogymnus obscuripes Mayr 1877 (Hymenoptera: Eulophidae), and is not distributed evenly among parasitoid species which attack the gall-former only in this area. This contrasts with the community in Britain, where three principal generalist parasitoids cause approximately equal mortalities. The agamic gall contains a taxonomically and structurally diverse guild of parasitoid and inquiline species, associated with the changing resource provided by a large, long-lived, complex gall. In contrast, the sexual community includes a taxonomically and structurally narrow guild, associated with a resource which is structurally simple, small in size and short-lived. No parasitoid species attacks the gall-former in both generations. Surprisingly, in spite of these differences in the nature of the gall resource in the two generations, over their entire range (native and invaded) the parasitoid guilds of the two are equally species rich.  相似文献   

9.
Associational resistance mediated by natural enemies   总被引:1,自引:0,他引:1  
Abstract.  1. Associational resistance theory suggests that the association of herbivore-susceptible plant species with herbivore-resistant plant species can reduce herbivore density on the susceptible plant species. Several casual mechanisms are possible but none has so far invoked natural enemies. Associational resistance mediated by natural enemies was tested for by examining densities of a gall fly, Asphondylia borrichiae (Diptera: Cecidomyiidae), and levels of parasitism on two closely related seaside plants, Borrichia frutescens and Iva frutescens , when alone and when co-occurring.
2. Both Borrichia and Iva grow alone or together on small offshore islands in Florida. Each host plant species has its own associated race of fly, but both races of fly are attacked by the same four species of parasitoids. Borrichia normally has a higher density of galls than Iva , and galls are larger on Borrichia than on Iva .
3. Gall size, gall abundance, parasitism levels, and parasitoid community composition were quantified on both Borrichia and Iva on islands where each species grew alone or together. Some islands were then manipulated by adding Borrichia to islands supporting only Iva , and by adding Iva to islands supporting only Borrichia . Subsequent gall densities and gall parasitism levels on the original native species were then examined.
4. On both natural and experimentally manipulated islands, gall densities on Iva were significantly lowered by the presence of Borrichia . This is because bigger parasitoid species that were common on Borrichia galls, which are bigger, spilled over and attacked the smaller Iva galls. Thus, parasitism rates on Iva were higher on islands where Borrichia co-occurred than on islands where Borrichia were absent. Most parasitoids from Iva were too small to successfully attack the large Borrichia galls and so gall density on Borrichia was unaffected by the presence of Iva .  相似文献   

10.
Abstract 1. Immature stages of the gall midge, Asphondylia borrichiae, are attacked by four species of parasitoids, which vary in size and relative abundance within patches of the gall midge’s primary host plant, sea oxeye daisy (Borrichia frutescens). 2. In the current study, a bagging experiment found that the smallest wasp, Galeopsomyia haemon, was most abundant in galls exposed to natural enemies early in the experiment, when gall diameter is smallest, while the wasp with the longest ovipositor, Torymus umbilicatus, dominated the parasitoid community in galls that were not exposed until the 5th and 6th weeks when gall diameter is maximal. 3. Moreover, the mean number of parasitoids captured using large artificial galls were 70% and 150% higher compared with medium and small galls respectively, while stem height of artificial galls significantly affected parasitoid distribution. Galls that were level with the top of the sea oxeye canopy captured 60% more parasitoids compared with those below the canopy and 50% more than galls higher than the plant canopy. 4. These non‐random patterns were driven primarily by the differential distribution of the largest parasitoid, T. umbilicatus, which was found significantly more often than expected on large galls and the smallest parasitoid of the guild, G. haemon, which tended to be more common on stems level with the top of the plant canopy. 5. Large Asphondylia galls, especially those located near the top of the Borrichia canopy, were more likely to be discovered by searching parasitoids. Results using artificial galls were consistent with rates of parasitism of Asphondylia galls in native patches of sea oxeye daisy. Gall diameter was 19% greater and the rate of parasitism was reduced by almost 50% on short stems; as a result, gall abundance was 24% higher on short stems compared with ones located near the top of the plant canopy. 6. These results suggest that parasitoid community composition within galls is regulated by both interspecific differences in ovipositor length and preferences for specific gall size and/or stem length classes.  相似文献   

11.
Many parasitic organisms have an ability to manipulate their hosts to increase their own fitness. In parasitoids, behavioral changes of mobile hosts to avoid or protect against predation and hyperparasitism have been intensively studied, but host manipulation by parasitoids associated with endophytic or immobile hosts has seldom been investigated. We examined the interactions between a gall inducer Masakimyia pustulae (Diptera: Cecidomyiidae) and its parasitoids. This gall midge induces dimorphic leaf galls, thick and thin types, on Euonymus japonicus (Celastraceae). Platygaster sp. was the most common primary parasitoid of M. pustulae. In galls attacked by Platygaster sp., whole gall thickness as well as thicknesses of upper and lower gall wall was significantly larger than unparasitized galls, regardless of the gall types, in many localities. In addition, localities and tree individuals significantly affected the thickness of gall. Galls attacked by Platygaster sp. were seldom hyperparasitized in the two gall types. These results strongly suggest that Platygaster sp. manipulates the host plant''s development to avoid hyperparasitism by thickening galls.  相似文献   

12.
Communities of insect herbivores are thought to be structured mainly by indirect processes mediated by shared natural enemies, such as apparent competition. In host–parasitoid interaction networks, overlap in natural enemy communities between any pair of host species depends on the realized niches of parasitoids, which ultimately depend on the foraging decisions of individuals. Optimal foraging theory predicts that egg-limited parasitoid females should reject small hosts in favour of future opportunities to oviposit in larger hosts, while time-limited parasitoids are expected to optimize oviposition rate regardless of host size. The degree to which parasitoids are time- or egg-limited depends in part on weather conditions, as this determines the proportion of an individual''s lifespan that is available to foraging. Using a 10-year time series of monthly quantitative host–parasitoid webs, we present evidence for host-size-based electivity and sex allocation in the common secondary parasitoid Asaphes vulgaris. We argue that this electivity leads to body-size-dependent asymmetry in apparent competition among hosts and we discuss how changing weather patterns, as a result of climate change, may impact foraging behaviour and thereby the size-structure and dynamics of host–parasitoid indirect interaction networks.  相似文献   

13.
We compared the parasitoid communities associated with grass-feeding herbivores in Germany and Britain to examine geographical consistency in community composition and to test ecological characteristics of the plants and host insects that may explain variability in parasitoid community structure. The parasitoid communities of 16 chalcid wasps feeding on ten grass species were sampled between 1986 and 1989 at 4-11 sites per grass species in southwest Germany. The data were compared to published data from Great Britain, comprising 18 chalcid hosts on ten grass species sampled between 1980 and 1992 at 24 sites in Wales and England. Results showed that many conclusions drawn from patterns in Britain did not hold for Germany, emphasizing the need to repeat analyses in different geographical regions. The parasitoid communities of the Tetramesa hosts included on average 8.1 parasitoid species in Germany, while the British hosts supported only 4.1 parasitoids. The number of monophagous parasitoid species was similar in both areas (2.4 vs 3.2), but German host populations supported many more polyphagous species (5.1 vs 0.9). This difference reinforces the earlier conclusion that parasitoid communities in Britain are highly undersaturated. Increased numbers of parasitoid species in Germany did not result in increased parasitism rates, so the closer species packing was paralleled by reduced impact of each species. In Germany, percent parasitism (range: 5-74%) was closely correlated with log host density, explaining 90% of the variance, while in Great Britain, percent parasitism was less variable (range: 36-76%) and was not related to host density or other host or host plant characteristics. Gallers and non-gallers supported equal numbers of parasitoids in both Germany and Britain, offering support for neither the enemy hypothesis of the adaptive nature of plant galls nor for the finding that galls are often more susceptible to enemy attack than their non-galling relatives. Furthermore, gregarious Tetramesa hosts were not attacked by more parasitoid species than solitary hosts.  相似文献   

14.
Insect parasitoids are important components of many terrestrial ecosystems. However, relatively little is known about the mechanisms responsible for structuring their populations. Here we investigate the ability of Megastigmus stigmatizans, an oak gall wasp parasitoid, to track its host Andricus kollari over two different timescales, and examine its current population structure across a divide in host population structure. The divide represents a transition in gall wasp host-plant species and offers the opportunity to examine whether the split, which divides gall wasp populations, manifests itself in the next trophic level. Analysis of mitochondrial haplotype data for parasitoid and host reveals: (i) A similar phylogeographic population structure for both, with Iberian populations more derived with respect to more eastern populations. (ii) It is likely that the host colonized the Iberian refuge earlier than the parasitoid, probably by at least one glacial cycle. (iii) Recent range expansion of central European host populations northwards has resulted in pursuit by parasitoids from the same geographic origin. (iv) In addition, Iberian parasitoid populations have crossed a major divide in host population structure to invade northern Europe. Such human-facilitated escape from natural refugial distributions may have important implications for the composition and structure of northern European gall wasp communities.  相似文献   

15.
Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity.  相似文献   

16.
Studies of thermal level‐related asynchrony in a host–parasitoid relationship are necessary to understand the effects of climate change on new host–parasitoid interactions. In the Asian chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) and its Chalcidoidea parasitoids, phenological synchrony is assumed to be weather‐dependent in a new area of expansion. To evaluate the effects of environmental thermal regimes on the host, a phenology model for different cynipid stages (larvae, pupae, adults, and adult emergence) and a host–parasitoid phenological estimator are developed in three chestnut fields during two successive growth seasons and subsequently validated in areas with chestnut fields at two different altitudes. Comparisons of the timings of the juvenile and adult stages with those of the parasitoid complex demonstrate that the shortest period of occurrence for cynipids within galls has negative effects on the host–parasitoid relationships at higher temperature levels, thereby increasing phenological asynchrony for some parasitoids species. Reducing the development time of pupae and adults decreases the likelihood of success for some parasitoid species at higher temperature levels. We also record the extension of the gall wasp development time (approximately 15 days) at higher altitudes (linked to a lower mean temperature of approximately 1.5 °C). These results highlight how parasitization on the new hosts is dependent on the host phenology and, in the present study, is limited by the short duration of the presence of the host in galls, which could explain the considerable differences in cynipid gall wasp parasitization recorded at different altimeters.  相似文献   

17.
Studies on the determinants of plant–herbivore and herbivore–parasitoid associations provide important insights into the origin and maintenance of global and local species richness. If parasitoids are specialists on herbivore niches rather than on herbivore taxa, then alternating escape of herbivores into novel niches and delayed resource tracking by parasitoids could fuel diversification at both trophic levels. We used DNA barcoding to identify parasitoids that attack larvae of seven Pontania sawfly species that induce leaf galls on eight willow species growing in subarctic and arctic–alpine habitats in three geographic locations in northern Fennoscandia, and then applied distance‐ and model‐based multivariate analyses and phylogenetic regression methods to evaluate the hierarchical importance of location, phylogeny and different galler niche dimensions on parasitoid host use. We found statistically significant variation in parasitoid communities across geographic locations and willow host species, but the differences were mainly quantitative due to extensive sharing of enemies among gallers within habitat types. By contrast, the divide between habitats defined two qualitatively different network compartments, because many common parasitoids exhibited strong habitat preference. Galler and parasitoid phylogenies did not explain associations, because distantly related arctic–alpine gallers were attacked by a species‐poor enemy community dominated by two parasitoid species that most likely have independently tracked the gallers’ evolutionary shifts into the novel habitat. Our results indicate that barcode‐ and phylogeny‐based analyses of food webs that span forested vs. tundra or grassland environments could improve our understanding of vertical diversification effects in complex plant–herbivore–parasitoid networks.  相似文献   

18.
Fossil oak galls preserve ancient multitrophic interactions   总被引:1,自引:0,他引:1  
Trace fossils of insect feeding have contributed substantially to our understanding of the evolution of insect-plant interactions. The most complex phenotypes of herbivory are galls, whose diagnostic morphologies often allow the identification of the gall inducer. Although fossil insect-induced galls over 300Myr old are known, most are two-dimensional impressions lacking adequate morphological detail either for the precise identification of the causer or for detection of the communities of specialist parasitoids and inquilines inhabiting modern plant galls. Here, we describe the first evidence for such multitrophic associations in Pleistocene fossil galls from the Eemian interglacial (130000-115000 years ago) of The Netherlands. The exceptionally well-preserved fossils can be attributed to extant species of Andricus gallwasps (Hymenoptera: Cynipidae) galling oaks (Quercus), and provide the first fossil evidence of gall attack by herbivorous inquiline gallwasps. Furthermore, phylogenetic placement of one fossil in a lineage showing obligate host plant alternation implies the presence of a second oak species, Quercus cerris, currently unknown from Eemian fossils in northwestern Europe. This contrasts with the southern European native range of Q. cerris in the current interglacial and suggests that gallwasp invasions following human planting of Q. cerris in northern Europe may represent a return to preglacial distribution limits.  相似文献   

19.
1. The gall‐forming midge Rhopalomyia californica was exposed experimentally to parasitism and predation during only the egg stage, during only the larval stage, during neither stage, or during both stages. 2. The combined action of natural enemies that attack during both the egg stage and the larval stage led to the lowest number of midges and total insects (midges + parasitoids) in the next generation, and the highest percentage parasitism. 3. The larval parasitoid killed a large fraction of hosts without producing new parasitoid offspring, while there is some indication that the egg parasitoid on its own tended to produce the most parasitoid offspring. The contrasting implications of host mortality versus parasitoid production for biological control are discussed. 4. Exposure to larval parasitoids resulted in a reduction in the number of egg parasitoid offspring produced, but exposure to the egg parasitoid did not affect the number of larval parasitoid offspring produced significantly.  相似文献   

20.
Abstract. 1. Atriplex canescens (Pursh) Nuttall and A.polycarpa (Torrey) Watson (Chenopodiaceae) support twelve morphologically distinct gall types in southern California. Thirty-seven common species of parasitoids, predators and inquilines are associated with these galls. 2. The galls incited by eight members of the Asphondylia atriplicis Cockerell (Diptera: Cecidomyiidae) species complex are linked into a single, interacting community through shared hymenopterous parasitoids and inquilines. 3. Cluster analysis (UPGMA) grouped the fifteen most common species of Chalcidoidea into three host guilds of five species each: (1) specialists in tumour stem and blister leaf galls on A.canescens, (2) specialists in woolly stem galls on A.poiycarpa, and (3) generalists that attack all galls. Guild 1 dominated the galls with which it was primarily associated, while guild 3 dominated the remainder. 4. The abundances of the parasitoids of the tumour stem and blister leaf galls were negatively correlated with the abundances of two organizer species, a gall-forming inquiline, Tetrastichus cecidobroter Gordh and Hawkins, and an internal, larval—pupal parasitoid, Tetrastichus sp. B. The abundances of nine of the twelve most common chalcidoids were not correlated with the abundances of all coaccurring species in six other galls. 5. Host seasonality partly determines parasitoid population dynamics and guild structure. Parasitoid dominance increased with gall duration, suggesting that parasitoid competition depends on resource stability. The two continuously available galls were dominated by their specialist guild, while all seasonal galls were dominated by generalists. The subdominant specialists of woolly stem galls may represent competitively inferior species that utilize those galls opportunistically, because of the gall's widespread distribution and 9–10 month yearly availability. 6. Sites in the Colorado Desert and chaparral that supported several gall types showed stable relative abundances of the major parasitoid species, whereas sites in the Mojave Desert that supported only woolly stem galls had unpredictable parasitoid species assemblages. 7. The competitive success of Atriplex gall parasitoids may depend primarily on voltinism (multivoltine species dominated univoltine species) and mode of feeding (phytophagous, mixed entomophagous—phytophagous and facultatively hyperparasitic species in general dominated strict primary parasitoids).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号