首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Baker's yeast (Saccharomyces cerevisiae) cells were magnetically modified with magnetic iron oxide particles prepared by microwave irradiation of iron(II) sulfate at high pH. The modification procedure was very simple and fast. Both non‐cross‐linked and glutaraldehyde cross‐linked magnetic cells enabled efficient sucrose conversion into glucose and fructose, due to the presence of active intracellular invertase. The prepared magnetic whole‐cell biocatalyst was stable; almost the same catalytic activity was observed after 1‐month storage at 4°C. Simple magnetic separation and stability of the developed biocatalyst enabled its reusability without significant loss of enzyme activity.

Significance and Impact of the Study

Magnetic whole yeast cell biocatalyst containing intracellular invertase in its natural environment has been prepared. Magnetic properties enable its easy separation from reaction mixture. Magnetically modified Saccharomyces cerevisiae cells have been used for invert sugar production, hydrolysing sucrose into glucose and fructose. The described magnetization procedure employing microwave‐synthesized iron oxide microparticles is a low‐cost and easy‐to‐perform alternative to already existing magnetization techniques.  相似文献   

2.
Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label‐free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody‐immobilized cell‐rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell‐rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34‐positive and ‐negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34‐positive and CD34‐negative cells on antibody‐immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell‐sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
High capacity magnetic protein A agarose beads, LOABeads PrtA, were used in the development of a new process for affinity purification of monoclonal antibodies (mAbs) from non-clarified CHO cell broth using a pilot-scale magnetic separator. The LOABeads had a maximum binding capacity of 65 mg/mL and an adsorption capacity of 25–42 mg IgG/mL bead in suspension for an IgG concentration of 1 to 8 g/L. Pilot-scale separation was initially tested in a mAb capture step from 26 L clarified harvest. Small-scale experiments showed that similar mAb adsorptions were obtained in cell broth containing 40 × 106 cells/mL as in clarified supernatant. Two pilot-scale purification runs were then performed on non-clarified cell broth from fed-batch runs of 16 L, where a rapid mAb adsorption ≥96.6% was observed after 1 h. This process using 1 L of magnetic beads had an overall mAb yield of 86% and 16 times concentration factor. After this single protein A capture step, the mAb purity was similar to the one obtained by column chromatography, while the host cell protein content was very low, <10 ppm. Our results showed that this magnetic bead mAb purification process, using a dedicated pilot-scale separation device, was a highly efficient single step, which directly connected the culture to the downstream process without cell clarification. Purification of mAb directly from non-clarified cell broth without cell separation can provide significant savings in terms of resources, operation time, and equipment, compared to legacy procedure of cell separation followed by column chromatography step. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2775, 2019.  相似文献   

4.
Human CD34+ cells from cord blood were separated in a two-step process using a commercial, immunomagnetic cell retention system. The performance of the system was evaluated by analyzing a number of eluents from the separations with a number of analytical techniques. In addition to cell counts and flow cytometry analysis, a new experimental technique that is undergoing development, cell tracking velocimetry (CTV), was used. CTV measures the degree to which a cell is immunomagnetically labeled, known as the magnetophoretic mobility, of a population of cells on a cell-by-cell basis and presents the results in the form of a histogram similar to flow cytometry data. The average recovery and purity of CD34+ cells from 10 separations was 52% and 60%, respectively. CTV analysis indicated that the mean magnetophoretic mobility of the positively enriched CD34 cells was 9.64 x 10(-5) mm3/T-A-s, while the mean mobility from negative eluents was -2.02 x 10(-6) mm3/T-A-s, very similar to the mobility of unlabeled cells. Within the positive eluents, the range of magnetophoretic mobility was approximately 50-fold, representing a plausible 50-fold range in surface CD34 antigen expression. CTV analysis also indicated that in some separations, positive cells were not retained by the immunomagnetic cell retention system. Finally, preliminary studies indicate that monocytes might be a primary cause in the lower purities and recoveries seen in this study. It is suggested that the monocytes phagocytose the magnetic nanobeads and become sufficiently magnetized to be retained within the Miltenyi column, reducing the purity of the positive eluent.  相似文献   

5.
Protein glycosylation is one of the most important PTMs in biological organism. Lectins such as concanavalin A (Con A) have been widely applied to N‐glycosylated protein investigation. In this study, we developed Con A‐immobilized magnetic nanoparticles for selective separation of glycoproteins. At first, a facile immobilization of Con A on aminophenylboronic acid‐functionalized magnetic nanoparticles was performed by forming boronic acid‐sugar‐Con A bond in sandwich structure using methyl α‐D ‐mannopyranoside as an intermedium. The selective capture ability of Con A‐modified magnetic nanoparticles for glycoproteins was tested using standard glycoproteins and cell lysate of human hepatocelluar carcinoma cell line 7703. In total 184 glycosylated sites were detected within 172 different glycopeptides corresponding to 101 glycoproteins. Also, the regeneration of the protein‐immobilized nanoparticles can easily be performed taking advantage of the reversible binding mechanism between boronic acid and sugar chain. The experiment results demonstrated that Con A‐modified magnetic nanoparticles by the facile and low‐cost synthesis provided a convenient and efficient enrichment approach for glycoproteins, and are promising candidates for large‐scale glycoproteomic research in complicated biological samples.  相似文献   

6.
Direct separation of target cells from mixed population, such as peripheral blood, umbilical cord blood, and bone marrow, is an essential technique for various therapeutic or diagnosis applications. In this study, novel particles were fabricated, and direct magnetic separation of immune cells from whole blood using such particles was performed. The magnetotactic bacterium Magnetospirillum magneticum AMB‐1 synthesizes intracellular bacterial magnetic particles (BacMPs), and protein G was expressed on the surface of the BacMPs by gene fusion techniques with anchor proteins isolated from BacMP membrane. The BacMPs displaying protein G (protein G‐BacMPs) had high binding capabilities to a wide range of antibody types, and various versions of protein G‐BacMPs binding with different anti‐CD monoclonal antibodies were constructed. Consequently, direct magnetic separation of immune cells from whole blood using protein G‐BacMPs binding with anti‐CD monoclonal antibodies was demonstrated. B lymphocytes (CD19+ cells) or T lymphocytes (CD3+ cells), which represent less than 0.05% in whole blood cells, were successfully separated at a purity level of more than 96%. This level was superior to that from previous reports using other magnetic separation approaches. The results of this study demonstrate the utility of protein G‐BacMP and this particle may become a powerful tool for various therapeutic or diagnosis applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

7.
Magnetic nanoparticles produced by magnetotactic bacterium, bacterial magnetic particles (BacMPs), covered with a lipid bilayer membrane (magnetosome membrane) can be used to separate specific target cells from heterogeneous mixtures because they are easily manipulated by magnets and it is easy to display functional proteins on their surface via genetic engineering. Despite possessing unique and valuable characteristics, the potential toxicity of BacMPs to the separated cells has not been characterized in detail. Here, a novel technique was developed for the reconstruction of magnetosome membrane of BacMPs expressing protein A (protein A-BacMPs) to reduce cytotoxicity and the newly developed nanomaterial was then used for magnetic cell separation. The development of the magnetosome membrane-reconstructed protein A-BacMP was based on the characteristics of the Mms13 anchor protein, which strongly binds to the magnetite surface of BacMPs. Treatment of protein A-BacMPs with detergents removed contaminating proteins but did not affect retention of Mms13-protein A fusion proteins. The particle surfaces were then reconstructed with phosphatidylcholine. The protein A-BacMPs containing reconstructed magnetosome membranes remained dispersible and retained the ability to immobilize antibody. In addition, they contained few membrane surface proteins and endotoxins, which were observed on non-treated protein A-BacMPs. Magnetic separation of monocytes and B-lymphocytes from the peripheral blood was achieved with high purity using magnetosome membrane-reconstructed protein A-BacMPs.  相似文献   

8.
Bioaffinity interactions have been, and continue to be, successfully adapted from nature for use in separation and detection applications. It has been previously reported that the magnetophoretic mobility of labeled cells show a saturation type phenomenon as a function of the concentration of the free antibody-magnetic nanoparticle conjugate which is consistent with other reports of antibody-fluorophore binding. Starting with the standard antibody-antigen relationship, a model was developed which takes into consideration multi-valence interactions, and various attributes of flow cytometry (FCM) and cell tracking velocimetry (CTV) measurements to determine both the apparent dissociation constant and the antibody-binding capacity (ABC) of a cell. This model was then evaluated on peripheral blood lymphocytes (PBLs) labeled with anti CD3 antibodies conjugated to FITC, PE, or DM (magnetic nanoparticles). Reasonable agreements between the model and the experiments were obtained. In addition, estimates of the limitation of the number of magnetic nanoparticles that can bind to a cell as a result of steric hinderance was consistent with measured values of magnetophoretic mobility. Finally, a scale-up model was proposed and tested which predicts the amount of antibody conjugates needed to achieve a given level of saturation as the total number of cells reaches 10(10), the number of cells needed for certain clinical applications, such as T-cell depletions for mismatched bone marrow transplants.  相似文献   

9.
High gradient magnetic cell separation with MACS.   总被引:85,自引:0,他引:85  
A flexible, fast and simple magnetic cell sorting system for separation of large numbers of cells according to specific cell surface markers was developed and tested. Cells stained sequentially with biotinylated antibodies, fluorochrome-conjugated avidin, and superparamagnetic biotinylated-microparticles (about 100 nm diameter) are separated on high gradient magnetic (HGM) columns. Unlabelled cells pass through the column, while labelled cells are retained. The retained cells can be easily eluted. More than 10(9) cells can be processed in about 15 min. Enrichment rates of more than 100-fold and depletion rates of several 1,000-fold can be achieved. The simultaneous tagging of cells with fluorochromes and very small, invisible magnetic beads makes this system an ideal complement to flow cytometry. Light scatter and fluorescent parameters of the cells are not changed by the bound particles. Magnetically separated cells can be analysed by fluorescence microscopy or flow cytometry or sorted by fluorescence-activated cell sorting without further treatment. Magnetic tagging and separation does not affect cell viability and proliferation.  相似文献   

10.
Continuous magnetic separation, in which there is no accumulation of mass in the system, is an inherently dynamic process, requiring advanced knowledge of the separable species for optimal instrument operation. By determining cell magnetization in a well-defined field, we may predict the cell trajectory behavior in the well-characterized field environments of our continuous separators. Magnetization is determined by tracking the migration of particles with a technique known as cell tracking velocimetry (CTV). The validation of CTV requires calibration against an external standard. Furthermore, such a standard, devoid of the variations and instabilities of biological systems, is needed to reference the method against day-to-day shifts or trends. To this end, a method of synthesizing monodisperse, magnetite-doped polymeric microspheres has been developed. Five sets of microspheres differing in their content of magnetite, and each of approximately 2.7 microm diameter, are investigated. An average gradient of 0.18 T/mm induces magnetic microsphere velocities ranging from 0.45 to 420 microns/s in the CTV device. The velocities enable calculation of the microsphere magnetization. Magnetometer measurements permit the determination of magnetization at a flux density comparable to that of the CTV magnet's analysis region, 1.57 T. A comparison of the results of the CTV and magnetometer measurements shows good agreement.  相似文献   

11.
Here, we present a novel technique to immobilize magnetic particles onto whole Gluconobacter oxydans in situ via a synthetic adhesive biomimetic material inspired by the protein glues of marine mussels. Our approach involves simple coating of a cell adherent polydopamine film onto magnetic nanoparticles, followed by conjugation of the polydopamine‐coated nanoparticles to G. oxydans which resulted in cell aggregation. After optimization, 21.3 mg (wet cell weight) G. oxydans per milligram of nanoparticle was aggregated and separated with a magnet. Importantly, the G. oxydan aggregates showed high specific activity and good reusability. The facile approach offers the potential advantages of low cost, easy cell separation, low diffusion resistance, and high efficiency. Furthermore, the approach is a convenient platform technique for magnetization of cells in situ by direct mixing of nanoparticles with a cell suspension. Biotechnol. Bioeng. 2012; 109: 2970–2977. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo.  相似文献   

13.
Direct binding and characterization of lipase onto magnetic nanoparticles   总被引:4,自引:0,他引:4  
Lipase was covalently bound onto Fe(3)O(4) magnetic nanoparticles (12.7 nm) via carbodiimide activation. The Fe(3)O(4) magnetic nanoparticles were prepared by coprecipitating Fe(2+) and Fe(3+) ions in an ammonia solution and treating under hydrothermal conditions. The analyses of transmission electron microscopy (TEM) and X-ray diffraction (XRD) showed that the size and structure of magnetic nanoparticles had no significant changes after enzyme binding. Magnetic measurement revealed the resultant lipase-bound magnetic nanoparticles were superparamagnetic with a saturation magnetization of 61 emu/g (only slightly lower than that of the naked ones (64 emu/g)), a remanent magnetization of 1.0 emu/g, and a coercivity of 7.5 Oe. The analysis of Fourier transform infrared (FTIR) spectroscopy confirmed the binding of lipase onto magnetic nanoparticles. The binding efficiency of lipase was 100% when the weight ratio of lipase bound to Fe(3)O(4) nanoparticles was below 0.033. Compared to the free enzyme, the bound lipase exhibited a 1.41-fold enhanced activity, a 31-fold improved stability, and better tolerance to the variation of solution pH. For the hydrolysis of pNPP by bound lipase at pH 8, the activation energy within 20-35 degrees C was 6.4 kJ/mol, and the maximum specific activity and Michaelis constant at 25 degrees C were 1.07 micromol/min mg and 0.4 mM, respectively. It revealed that the available active sites of lipase and their affinity to substrate increased after being bound onto magnetic nanoparticles.  相似文献   

14.
A quick isolation and identification of N‐blocked peptides from protein digest mixtures were achieved by diisothiocyanate or isothiocyanate‐coupled magnetic nanoparticles and MS. After protein digests were guanidinated and then mixed with diisothiocyanate or isothiocyanate‐coupled magnetic nanoparticles, unmodified N‐terminal peptides were covalently bound to magnetic nanoparticles, and can be removed from the mixture under magnetic field. Therefore, N‐blocked peptides could be isolated and analyzed by MALDI or ESI MS. This new strategy was demonstrated with model peptides, proteins, and the lysates of HepG2 cells.  相似文献   

15.
Abstract

Flavobacterium ATCC 27551 was used as a model system for the preparation of magnetic biocatalysts. The magnetic modification was carried out by covalently binding carboxylate- and amino-modified magnetic nanoparticles onto cells. Magnetic Fe3O4 nanoparticles were also used for ionic adsorption on the cell surface. Magnetically modified cells were concentrated using a magnet and exhibited organophosphate hydrolyzing activity. The Taguchi method was used to optimize the binding of the magnetic nanoparticles on the cell surface. SEM image analyses demonstrated good linkage of the magnetic nanoparticles over the Flavobacterium ATCC 27551 cell surface. Under optimal conditions, the magnetic cells displayed specific activity ratios of 93%, 89% and 95%, compared with untreated cells, after the covalent coupling with carboxylate- and amino-modified magnetic nanoparticles and the ionic adsorption of magnetic Fe3O4 nanoparticles, respectively.  相似文献   

16.
Fe_3O_4磁性纳米粒子由于其良好的磁学性能,被广泛应用到了化学、生物、物理、环境保护等各个领域。尤其是在生物医学领域中的应用越来越受到研究者的关注。由于其所具有的优秀的超顺磁性性质,Fe_3O_4磁性纳米粒子可以作为造影剂,增强核磁共振成像的对比度和成像效果;也可以结合到纳米载药系统内用于药物的靶向输送;也可以包埋到蛋白内部用于蛋白的磁性分离;也可以用于基因治疗,提高靶细胞的转染效率;由于其在近红外光的作用下具有很好的光热转换效果,使温度升高,展现出的良好热疗效果,Fe_3O_4磁性纳米粒子又可以用于癌细胞的热疗。本文针对其在该领域中作为药物的靶向传递,蛋白的磁分离,核磁共振成像,热疗,以及基因治疗的载体等方面的研究应用进行了系统性的总结,阐述了Fe_3O_4磁性纳米粒子在生物医学领域中各种应用进展和优势。  相似文献   

17.
R S Molday  L L Molday 《FEBS letters》1984,170(2):232-238
Immunospecific magnetic microspheres, consisting of ferromagnetic iron dextran conjugated to Protein A, were used to specifically label red blood cells (RBC) for cell separation studies using high gradient magnetic chromatography ( HGMC ). When 10(7)-10(8) RBC labeled with Protein A-iron dextran microspheres were applied to a column containing 30 mg stainless steel wire placed in a 7.5 kilogauss magnetic field, 96 +/- 2% of the cells were retained in the column. These cells could be eluted by removing the magnetic field and mechanically agitating the column. The retention of labeled cells by HGMC was shown to be dependent on the applied magnetic field and the amount of wire packed into the column. HGMC in conjunction with cell labeling with immunospecific iron dextran microspheres have useful applications for the separation of specific cell types.  相似文献   

18.
在实验条件下诱导四膜虫种群交配进行有性生殖时,交配后的种群中除有性后代外,还会混杂一定比例的亲本细胞,而高纯度的有性后代是研究四膜虫一些基本生物学问题的重要基础。本研究利用四膜虫交配时不能摄食并且新产生的有性后代几小时后才恢复摄食能力的特性,以嗜热四膜虫(Tetrahymenathermophila)交配种群为对象,在其有性生殖阶段后期向交配体系中加入Fe3O4磁性纳米颗粒,未交配的亲本细胞由于能够摄入磁性颗粒而具有磁性;再利用有性后代和未交配细胞的磁性差异,在磁场作用下将有性后代分离纯化出来。通过优化过柱分离的时间点、分离柱的口径、分离柱中铁粉/石英粉的质量等分离条件,有性后代的分离纯度及收率均能达到98%以上。该分离方法亦可为其他种四膜虫或纤毛虫有性后代的分离纯化提供借鉴。  相似文献   

19.
Magnetotactic bacteria produce nanometer‐size intracellular magnetic crystals. The superior crystalline and magnetic properties of magnetosomes have been attracting much interest in medical applications. To investigate effects of intense static magnetic field on magnetosome formation in Magnetospirillum magneticum AMB‐1, cultures inoculated with either magnetic or non‐magnetic pre‐cultures were incubated under 0.2 T static magnetic field or geomagnetic field. The results showed that static magnetic field could impair the cellular growth and raise Cmag values of the cultures, which means that the percentage of magnetosome‐containing bacteria was increased. Static magnetic field exposure also caused an increased number of magnetic particles per cell, which could contribute to the increased cellular magnetism. The iron depletion in medium was slightly increased after static magnetic field exposure. The linearity of magnetosome chain was also affected by static magnetic field. Moreover, the applied intense magnetic field up‐regulated mamA, mms13, magA expression when cultures were inoculated with magnetic cells, and mms13 expression in cultures inoculated with non‐magnetic cells. The results implied that the interaction of the magnetic field created by magnetosomes in AMB‐1 was affected by the imposed magnetic field. The applied static magnetic field could affect the formation of magnetic crystals and the arrangement of the neighboring magnetosome. Bioelectromagnetics 30:313–321, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
This study deals with the morphofunctional influence of 72 h exposure to a 6 mT static magnetic field (SMF) during differentiation induced by 50 ng/ml 12‐O‐tetradecanoyl‐13‐phorbol acetate (TPA) in human leukaemia U937 cells. The cell morphology of U937 cells was investigated by optic and electron microscopy. Specific antibodies and/or molecules were used to label CD11c, CD14, phosphatidylserine, F‐actin and to investigate the distribution and activity of lysosomes, mitochondria and SER. [Ca2+]i was evaluated with a spectrophotometer. The degree of differentiation in SMF‐exposed cells was lower than that of non‐exposed cells, the difference being exposure time‐dependent. SMF‐exposed cells showed cell shape and F‐actin modification, inhibition of cell attachment, appearance of membrane roughness and large blebs and impaired expression of specific macrophagic markers on the cell surface. The intracellular localization of SER and lysosomes was only partially affected by exposure. A significant localization of mitochondria with an intact membrane potential at the cell periphery in non‐exposed, TPA‐stimulated cells was observed; conversely, in the presence of SMF, mitochondria were mainly localised near the nucleus. In no case did SMF exposure affect cell viability. The sharp intracellular increase of [Ca2+]i could be one of the causes of the above‐described changes. Bioelectromagnetics 30:352–364, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号