首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   618篇
  免费   30篇
  2023年   2篇
  2021年   4篇
  2020年   5篇
  2019年   7篇
  2018年   5篇
  2017年   2篇
  2016年   10篇
  2015年   17篇
  2014年   19篇
  2013年   32篇
  2012年   33篇
  2011年   25篇
  2010年   20篇
  2009年   26篇
  2008年   39篇
  2007年   32篇
  2006年   48篇
  2005年   37篇
  2004年   36篇
  2003年   36篇
  2002年   30篇
  2001年   16篇
  2000年   14篇
  1999年   17篇
  1998年   8篇
  1997年   11篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   4篇
  1992年   7篇
  1991年   10篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   6篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1980年   8篇
  1978年   5篇
  1977年   1篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1972年   2篇
  1970年   1篇
排序方式: 共有648条查询结果,搜索用时 15 毫秒
1.
Listeria monocytogenes possessed glucose oxidase and NADH oxidase activities in whole cells and lysed protoplasts respectively. The NADH oxidase activity sedimented with the membrane fraction and was inhibited by the respiratory inhibitors rotenone, 2-heptyl-4-hydroxy-quinoline-N-oxide and cyanide, suggesting the presence of a membrane associated respiratory chain.  相似文献   
2.
Abstract Most of the 16S ribosomal RNA gene of a sulfate-reducing magnetic bacterium, RS-1, was sequenced, and phylogenetic analysis was carried out. The results suggest that RS-1 is a member of the δ-Proteobacteria, and it appears to represent a new genus. RS-1 is the first bacterium reported outside the α-Proteobacteria that contains magnetite inclusions. RS-1 therefore disrupts the correlation between the α-Proteobacteria and possession of magnetite inclusions, and that between the δ-Proteobacteria and possession of greigite inclusions. The existence of RS-1 also suggests that intracellular magnetite biomineralization is of multiple evolutionary origins.  相似文献   
3.
Abstract Screening of fatty acid composition in 150 strains of marine microalgae, cyanobacteria and green algae was carried out, and 20 strains showed relatively high contents of palmitoleic acid. Among them, two cyanobacteria, Phormidium sp. NKBG 041105 and Oscillatoria sp. NKBG 091600, showed an unusually high cis -palmitoleic acid content (54.5% and 54.4% of total fatty acid, respectively). Phormidium sp. NKBG 041105 had the highest cis -palmitoleic acid content per biomass (46.3 mg (g dry cell weight)−1), and cis -palrnitoleic acid composition was found to be constant with varying temperature. These results indicate that this cyanobacterium could be considered as a new source for palmitoleic acid.  相似文献   
4.
We have developed an experimental system in which the irradiation with a red light pulse induces stomatal disorientation in the hypocotyl epidermis ofCucumis sativus L. In this system, the orientation of the division plane in guard mother cells was not defined correctly. Preprophase bands formed in these cells but their orientation was abnormal.  相似文献   
5.
Comparative study of acetaldehyde, furfural and 5-hydroxymethyl furfural from celluloses which differed in crystallinity was made by pyrolytic gas chromatography.

Pyrolysis of tobacco cellulose at 200~300°C resulted in rapid increase in the yields of furfurals from the amorphous regions in comparison with that from the crystalline regions. At 500°C, however, acetaldehyde was obtained in higher yields from microcrystalline cellulose than that from tobacco cellulose under the same condition.

In thermogravimetric analysis, the threshold temperature for the pyrolysis of tobacco cellulose was lower than that of microcrystylline cellulose. These results showed that the yields of the volatile compounds from pyrolysis of cellulose depended on temperature and crystallinity.  相似文献   
6.
The proliferation cycle of the microbody was studied in the primitive red alga Cyanidioschyzon merolae, which contains one microbody per cell. Cells were synchronized with a dark/light cycle, and the morphology of the microbody and its interaction with other organelles were observed three-dimensionally by fluorescence microscopy, transmission electron microscopy, and computer-assisted three-dimensional reconstruction of serial thin sections. The microbody in interphase cells is a sphere of 0.3 μm in diameter without a core. In M-phase, the microbody passes through a series of irregular shapes, in the order rod, worm, branched, H-shaped and dumbbell, and symmetric fission occurs just before cytokinesis. The microbody duplicates its volume in M-phase and three-dimensional quantitative analysis revealed that its surface area increases before its volume does. The microbody touches the mitochondrion and the chloroplast throughout its proliferation cycle, except briefly in interphase cells, winding around the divisional plane of the mitochondrion at one phase. Immunocytochemical labeling of catalase as a marker of matrix proteins of the microbody revealed that the duplication of catalase occurs in tandem with the volume increase. While no specific apparatus was identified in the microbody divisional areas, we identified an electron-dense apparatus about 30–50 nm in diameter between the microbody and the mitochondrion that may play a role in segregating the daughter microbodies. These results are the first characterization to show the morphological changes of one microbody in a one-microbody alga without proliferation-inducing substrates, which have been used in many studies, and clearly show that two daughter microbodies arise by binary fission of the pre-existing microbody. Received: 11 November 1998 / Accepted: 22 December 1998  相似文献   
7.
To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS). We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes) is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment (“Medaka Osteoclast”) was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish) were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4) and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation–reduction processes (gene ontogeny term GO:0055114), and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation.  相似文献   
8.
Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr-1 (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the “food shed” for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.  相似文献   
9.
During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.  相似文献   
10.
α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na+/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104–23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption stage in the intestine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号