首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the current study, reverse micellar extraction (RME) for the purification of stem bromelain was successfully achieved using the sodium bis(2‐ethylhexyl) sulfosuccinate (AOT)/isooctane system. A maximum forward extraction efficiency of 58.0% was obtained at 100 mM AOT concentration, aqueous phase pH of 8.0 and 0.2 M NaCl. Back extraction studies on altering stripping phase pH and KCl concentration, addition of counter‐ion and iso‐propyl alcohol (IPA) and mechanical agitation with glass beads indicated that IPA addition and agitation with glass beads have significant effects on extraction efficiency. The protein extraction was higher (51.9%) in case of the IPA (10% v/v) added system during back extraction as compared to a cetyltrimethylammonium bromide (100 mM) added system (9.42%). The central composite design technique was used to optimize the back extraction conditions further. Concentration of IPA, amount of glass beads, mixing time, and agitation speed (in rpm) were the variables selected. IPA concentration of 8.5% (v/v), glass bead concentration of 0.6 (w/v), and mixing time of 45 min at 400 rpm resulted in higher back extraction efficiency of 45.6% and activity recovery of 88.8% with purification of 3.04‐fold. The study indicated that mechanical agitation using glass beads could be used for destabilizing the reverse micelles and release of bromelain back into the fresh aqueous phase. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:845–855, 2014  相似文献   

2.
Purification schemes for antibody production based on affinity chromatography are trying to keep pace with increases in cell culture expression levels and many current research initiatives are focused on finding alternatives to chromatography for the purification of Monoclonal antibodies (MAbs). In this article, we have investigated an alternative separation technique based on liquid–liquid extraction called the reverse micellar extraction. We extracted MAb (IgG1) using reverse micelles of an anionic surfactant, sodium bis 2‐ethyl‐hexyl sulfosuccinate (AOT) and a combination of anionic (AOT) and nonionic surfactants (Brij‐30, Tween‐85, Span‐85) using isooctane as the solvent system. The extraction efficiency of IgG1 was studied by varying parameters, such as pH of the aqueous phase, cation concentration, and type and surfactant concentration. Using the AOT/Isooctane reverse micellar system, we could achieve good overall extraction of IgG1 (between 80 and 90%), but only 30% of the bioactivity of IgG1 could be recovered at the end of the extraction by using its binding to affinity chromatography columns as a surrogate measure of activity. As anionic surfactants were suspected as being one of the reasons for the reduced activity, we decided to combine a nonionic surfactant with an anionic surfactant and then study its effect on the extraction efficiency and bioactivity. The best results were obtained using an AOT/Brij‐30/Isooctane reverse micellar system, which gave an overall extraction above 90 and 59% overall activity recovery. An AOT/Tween‐85/Isooctane reverse micellar system gave an overall extraction of between 75 and 80% and overall activity recovery of around 40–45%. The results showed that the activity recovery of IgG1 can be significantly enhanced using different surfactant combination systems, and if the recovery of IgG1 can be further enhanced, the technique shows considerable promise for the downstream purification of MAbs. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
Di(2‐ethylhexyl) phosphoric acid (HDEHP) was used as a transition metal ion chelator and introduced to the nonionic reverse micellar system composed of equimolar Triton X‐45 and Span 80 at a total concentration of 30 mmol/L. Ni(II) ions were chelated to the HDEHP dimers in the reverse micelles, forming a complex denoted as Ni(II)R2. The Ni(II)‐chelate reverse micelles were characterized for the purification of recombinant hexahistidine‐tagged enhanced green fluorescent protein (EGFP) expressed in Escherichia coli. The affinity binding of EGFP to Ni(II)R2 was proved by investigation of the forward and back extraction behaviors of purified EGFP. Then, EGFP was purified with the affinity reverse micelles. It was found that the impurities in the feedstock impeded EGFP transfer to the reverse micelles, though they were little solubilized in the organic phase. The high specificity of the chelated Ni2+ ions toward the histidine tag led to the production of electrophoretically pure EGFP, which was similar to that purified by immobilized metal affinity chromatography. A two‐stage purification by the metal‐chelate affinity extraction gave rise to 87% recovery of EGFP. Fluorescence spectrum analysis suggests the preservation of native protein structure after the separation process, indicating the system was promising for protein purification. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

4.
Reverse micellar systems of CTAB/isooctane/hexanol/butanol and AOT/isooctane are used for the extraction and primary purification of bromelain from crude aqueous extract of pineapple wastes (core, peel, crown and extended stem). The effect of forward as well as back extraction process parameters on the extraction efficiency, activity recovery and purification fold is studied in detail for the pineapple core extract. The optimized conditions for the extraction from core resulted in forward and back extraction efficiencies of 45% and 62%, respectively, using reverse micellar system of cationic surfactant CTAB. A fairly good activity recovery (106%) and purification (5.2-fold) of bromelain is obtained under these conditions. Reverse micellar extraction from peel, extended stem and crown using CTAB system resulted in purification folds of 2.1, 3.5, and 1.7, respectively. Extraction from extended stem using anionic surfactant AOT in isooctane did not yield good results under the operating conditions employed.  相似文献   

5.
Phase transfer studies were conducted to evaluate the solubilization of soy hull peroxidase (SHP) in reverse micelles formed in isooctane/butanol/hexanol using the cationic surfactant cetyltrimethylammonium bromide (CTAB). The effect of various parameters such as pH, ionic strength, surfactant concentration of the initial aqueous phase for forward extraction and buffer pH, type and concentration of salt, concentration of isopropyl alcohol and volume ratio for back extraction was studied to improve the efficiency of reverse micellar extraction. The active SHP was recovered after a complete cycle of forward and back extraction. A forward extraction efficiency of 100%, back extraction efficiency of 36%, overall activity recovery of 90% and purification fold of 4.72 were obtained under optimised conditions. Anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) did not yield good results under the conditions studied. The phase transfer of soy hull peroxidase was found to be controlled by electrostatic and hydrophobic interactions during forward and back extraction respectively.  相似文献   

6.
Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water‐oil‐water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0‐fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1–17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1084–1092, 2014  相似文献   

7.
A new nonionic reverse micellar system is developed by blending two nonionic surfactants, Triton X‐45 and Span 80. At total surfactant concentrations lower than 60 mmol/L and molar fractions of Triton X‐45 less than 0.6, thermodynamically stable reverse micelles of water content (W0) up to 30 are formed. Di(2‐ethylhexyl) phosphoric acid (HDEHP; 1–2 mmol/L) is introduced into the system for chelating transition metal ions that have binding affinity for histidine‐rich proteins. HDEHP exists in a dimeric form in organic solvents and a dimer associated with one transition metal ion, including copper, zinc, and nickel. The copper‐chelate reverse micelles (Cu‐RM) are characterized for their W0, hydrodynamic radius (Rh), and aggregation number (Nag). Similar with reverse micelles of bis‐2‐ethylhexyl sodium sulfosuccinate (AOT), Rh of the Cu‐RM is also linearly related to W0. However, Nag is determined to be 30–90 at W0 of 5–30, only quarter to half of the AOT reverse micelles. Then, selective metal‐chelate extraction of histidine‐rich protein (myoglobin) by the Cu‐RM is successfully performed with pure and mixed protein systems (myoglobin and lysozyme). The solubilized protein can be recovered by stripping with imidazole or ethylinediaminetetraacetic acid (EDTA) solution. Because various transition metal ions can be chelated to the reverse micelles, it is convinced that the system would be useful for application in protein purification as well as simultaneous isolation and refolding of recombinant histidine‐tagged proteins expressed as inclusion bodies. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

8.
Reverse micellar extraction is a promising technique in large-scale bioseparation. However, low recovery and high salt concentration in back extraction limit its application. In CTAB/n-octane/n-hexanol reverse micellar system, the enzyme, pancreatic kallikrein could be effectively enwrapped into reverse micelles in forward extraction, but was difficult to be released during back extraction. In this study, dilute chaotropes (urea and GuHCl) were introduced to enhance the release of enzyme instead of high salts in back extraction. Kallikrein enwrapped in reverse micelles was released effectively in the presence of dilute urea and GuHCl during back extraction. Nearly 100% activity recovery of kallikrein from commercial product was obtained by adding 0.60 M urea, and for kallikrein from crude material, the recovery increased greatly by adding 0.80 M urea and 0.08 M GuHCl in the stripping solution. The mechanism of chaotrope for enhancing the release of enzyme from micelles was explored and dynamic light scatter analysis showed that the chaotrope would influence the sizes of micelles during reverse micellar extraction.  相似文献   

9.
This work deals with the downstream processing of lipase (EC 3.1.1.3, from Aspergillus niger) using liquid emulsion membrane (LEM) containing reverse micelles for the first time. The membrane phase consisted of surfactants [cetyltrimethylammonium bromide (CTAB) and Span 80] and cosolvents (isooctane and paraffin light oil). The various process parameters for the extraction of lipase from aqueous feed were optimized to maximize activity recovery and purification fold. The mechanism of lipase transport through LEM consisted of three steps namely solubilization of lipase in reverse micelles, transportation of reverse micelles loaded with lipase through the liquid membrane, and release of the lipase into internal aqueous phase. The results showed that the optimum conditions for activity recovery (78.6%) and purification (3.14‐fold) were feed phase ionic strength 0.10 M NaCl and pH 9.0, surfactants concentration (Span 80 0.18 M and CTAB 0.1 M), volume ratio of organic phase to internal aqueous phase 0.9, ratio of membrane emulsion to feed volume 1.0, internal aqueous phase concentration 1.0 M KCl and pH 7.0, stirring speed 450 rpm, and contact time 15 min. This work indicated the feasibility of LEM for the downstream processing of lipase. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

10.
Phase transfer studies were carried out on the solubilization of horseradish peroxidase (HRP) (E.C. 1.11.1.7) in reverse micelles formed in isooctane using the anionic surfactant, aerosol OT, at concentrations between 50 and 110mM. The selectivity of this methodology was tested, because the HRP used comprised a mixture of seven different isoenzymes with a wide range of isoelectric points. Forward and backward transfers were carried out in wellstirred vessels until equilibrium was reached. Significant protein partitioning could only be obtained by using NaCl to adjust ionic strength in pH range between 1.5 and 3.5, with a maximum at pH 3. The back transfer process was best at pH 8 with 80mM phosphate buffer and 1 M KCI. A loss of 1% to 3% of the surfactant through precipitation at the interface at pH<4 was observed, which may be due to instability in this pH region, because, even without protein, a similar precipitate was noticed. Protein partitioning was approximately constant when the ionic strength was increased up to 1 MNaCl at pH 3, but protein recovery in back transfer decreased accordingly. Hydrophobic interactions together with association between the protein and surfactant might be responsible for that behavior. Protein partitioning remained the same when the surfactant concentration was decreased to 50 mM, at the expense of higher variability. HPLC chromatograms showed no apparent damage to the protein after reverse micellar extraction. Protein partitioning is best when the temperature is kept at 25xC. The amount of protein and specific activity recovered strongly depends on the phase ratio used during forward transfer. Overall activity recovery varied from 87% to 136% when the phase ratio was increased from 1:1 to 30:1 in forward transfer. This behavior may be due to a change in the ratio of the three isoenzymes recovered after the backward transfer process, with the most active one being increasingly enriched at higher phase ratios. (c) 1994 John Wiley & Sons, Inc.  相似文献   

11.
The efficiency of guanidine hydrochloride (GuHCl) addition in the suppression of gel formation and the extraction of lysozyme during reverse micellar extraction from chicken egg white was investigated. A low concentration of GuHCl in the feed permitted the successful extraction of lysozyme in its native form without gel formation, which is perceived as a novel function of GuHCl. The highest recovery and specific activity of lysozyme were obtained at a GuHCl concentration of 0.06 M in 25 mM AOT reverse micellar extraction from 20-fold-diluted natural chicken egg white. Lysozyme and ovalbumin CD spectra in the corresponding GuHCl aqueous solutions revealed no changes in the higher order structures of the proteins. Furthermore, the specific activity of lysozyme in the feed was well preserved in the GuHCl system. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
Nattokinase is a novel fibrinolytic enzyme that is considered to be a promising agent for thrombosis therapy. In this study, reverse micelles extraction was applied to purify and concentrate nattokinase from fermentation broth. The effects of temperature and phase volume ratio used for the forward and backward extraction on the extraction process were examined. The optimal temperature for forward and backward extraction were 25°C and 35°C respectively. Nattokinase became more thermosensitive during reverse micelles extraction. And it could be enriched in the stripping phase eight times during backward extraction. It was found that nattokinase could be purified by AOT reverse micelles with up to 80% activity recovery and with a purification factor of 3.9.  相似文献   

13.
Abstract

The antimicrobial activity of different reverse micelles on microorganisms is been compared using the disc diffusion method. The bis (2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelle showed a more significant inhibitory effect than do other reverse. micelles, and it had an antimicrobial activity against a broad range of microorganisms. Results from an antimicrobial activity test of isooctane and a forward extraction containing soybean protein suggest that the surfactant was chiefly responsible for inhibiting microbes in AOT/isooctane reverse micelle, while isooctane hardly inhibited the microbial growth. The properties of S. aureus, cultured in the TSB with AOT reverse micellar solution, were identified by the SEM and SDS-PAGE fingerprinting of cell-wall proteins. It is concluded that the cell-wall of the S. aureus decreased in the TSB with AOT reverse micellar solution, and some cell protein subunits of the S. aureus did not occurr, especially between 14.4 and 42.7 kDa, while one new protein subunit at near 97.4 kDa occurred  相似文献   

14.
The current work deals with downstream processing of lactoperoxidase using liquid emulsion membrane from the bovine milk whey, which is a by-product from dairy industry. It is an alternate separation technique that can be used for the selective extraction of lactoperoxidase. The extraction of lactoperoxidase in liquid emulsion membrane takes place due to the electrostatic interaction between the enzyme and polar head group of reverse micellar surfactant. The optimum conditions resulted in 2.86 factor purity and activity recovery of 75.21%. Downstream processing involving liquid emulsion membrane is a potential technique for the extraction of lactoperoxidase from bovine whey.  相似文献   

15.
用反胶束技术分离纯化蛋白质,具有高选择性、易于大规模操作等优点,具有良好的工业应用前景。但是离子型表面活性剂形成的反胶束体系萃取蛋白质容易引起蛋白质的变性,这是由于离子型表面活性剂的强电荷作用会导致蛋白质发生变性,从而在两相界面上产生沉淀。这也是离子型反胶束体系用于蛋白质萃取所存在的最大的困难。本文对用AOT/异辛烷反胶束体系从胰酶粗提物中萃取胰蛋白酶进行了研究,通过在反胶束相加入乙醇,解决了反胶束萃取蛋白质时使蛋白质变性失活的问题,并且大大减少了分相的时间。前萃取和反萃取之后的分相时间只需要10分钟左右,简化了实验步骤,优化了实验方法,在工业上的大规模应用成为可能。在本研究中,胰蛋白酶的前萃取率达到90%,反萃取率接近100%。最终得率为88%。纯化后的比活提高了5倍多,从300U/mg左右提高到了1800U/mg。  相似文献   

16.
The recovery of cytochrome c and ribonuclease A from di-2-ethylhexyl sodium sulfosuccinate (AOT) reverse micelles have been examined by the gas hydrate formation. The recovery of cytochrome c depended upon the kind of gas and the water content (w0=[H2O]/[AOT]) of reverse micellar solution containing cytochrome c prepared. Recoveries of cytochrome c and ribonuclease A were more than 80%, when 1,1,1,2-tetrafluoroethane (TFE) was used as a hydrating gas. The activity of cytochrome c recovered from reverse micelles was maintained perfectly.  相似文献   

17.
Dioctyldimethyl ammonium chloride (DODMAC) was used to form reverse micelles and to extract lysozyme from an aqueous solution into an organic phase. The solubilization behavior of lysozyme into a DODMAC reverse micellar phase was examined in terms of the temperature, the type of cations in the aqueous phase, and the surfactant concentration in the organic phase. Complete removal of lysozyme from the aqueous phase was obtained when the pH was set one unit higher than the pI of the protein. However, it was found that there is a solubilization limit of lysozyme in the organic phase. Not all the lysozyme extracted out of the initial aqueous phase was solubilized into the DODMAC reverse micellar phase, resulting in the formation of white precipitate at the aqueous-organic interface. Temperature has a negligible effect on the solubilization limit of lysozyme. The value of the solubilization limit is a strong function of the type of cations present in the aqueous phase, indicating an important role of lysozyme-cation interactions on the extraction process. An increase in the DODMAC concentration from 100-200 mM resulted in little change in the highest concentration of lysozyme obtained in the organic phase.  相似文献   

18.
Reverse micelles are formed in apolar solvents by spontaneous aggregation of surfactants. Surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) is most often used for the reverse micellar extraction of enzymes. However, the inactivation of enzyme due to strong interaction with AOT molecules is a severe problem. To overcome this problem, the AOT/water/isooctane reverse micellar system was modified by adding short chain polyethylene glycol 400 (PEG 400). The modified AOT reverse micellar system was used to extract Mucor javanicus lipase from the aqueous phase to the reverse micellar phase. The extraction efficiency (E) increased with the increase in PEG 400 addition and the maximum E in PEG 400 modified system was twofold higher than that in the PEG 400-free system. Upon addition of PEG 400, the water activity (a(w)) of aqueous phase decreased, whereas a(w) of reverse micellar phase increased. The circular dichroism spectroscopy analysis revealed that PEG 400 changes the secondary and tertiary structure of lipase. The maximum specific activity of lipase extracted in PEG 400-modified reverse micellar system was threefold higher than that in the PEG-free system.  相似文献   

19.
The concentrations of dioctyldimethyl ammonium chloride (DODMAC) and 1-decanol in isooctane needed to form reverse micelles by phase contact have been determined. The behavior of these reverse micelles in the extraction of aspartic acid, glutamic acid, and threonine was studied by analyzing all of the ionic species in the aqueous phase. The amino acid is extracted from the aqueous phase by exchanging with the Cl(-) counterions of DODMAC in the reverse micelles. The ionic species in the reverse micelles tend toward their undissociated states as the water uptake by the reverse micelles decreases. The effect of 1-decanol on the extraction of the amino acids with two negative charges is due to the change in the water uptake of the reverse micelles. The concentration of DODMAC has no effect on the ion exchange of the amino acid with one negative charge with the Cl(-) counterions of DODMAC in the reverse micelles. Higher molar ratios of decanol to DODMAC favor the selective separation of amino acids with different charge numbers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
alpha-chymotrypsin is taken as a model protein to investigate three aspects of the protein extraction by reverse micelles: (1) the comparison between the two forward transfer techniques, i.e., the liquid-liquid and the solid state-liquid transfer; (2)the back-transfer, i.e., the capability of the protein to be recovered from the micellar solution; and (3) the maintainance of the enzyme activity at the end of the extraction cycle. Concerning the forward transfer from the liquid phase, we study first the effect of salt initially present in the aqueous phase on the equilibrium concentration of the extracted species; further, we study the forward protein extraction from the solid state, and the effect of pH, salt, and protein concentration on the transfer efficiency. Concerning the back transfer, we find the somewhat surprising result, that the percentage of protein back-extraction depends on the type and concentration of salt used for the forward transfer. Preliminary data concerning an alternative method for the back-transfer using silica gel to liberate the protein from the micellar environment, are presented. Finally, it is found that the enzyme activity depends again on the type and concentration of salt used for the forward transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号