首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraction of flexibly-structured protein in Aerosol-OT (AOT)/isooctane reverse micelles was investigated. A flexibly-structured lysozyme was prepared by reduction and carboxymethylation of the disulfide bonds in the lysozyme molecule. For a comparison, lysozymes whose surface hydrophobicity was modified by monoacylation of the amino groups were also used. The extraction rate of the flexibly-structured lysozyme into the micellar phase was greater than that of the native and monoacylated lysozymes, although the free energy change of the lysozyme prepared by breaking the disulfide bonds was smaller than that of the lysozymes whose surfaces were monoacylated. Viscosity measurement of the micellar organic phase containing the modified lysozymes indicated that extraction of the flexibly-structured lysozyme changed the micelle–micelle interaction, while measurement of the interfacial tension between the AOT/isooctane and protein aqueous systems showed the flexibly-structured lysozyme to be the most amphiphilic in character. These results indicated that the flexible structure of a protein was more dominant than its surface hydrophobicity for its incorporation into reverse micelles, and that it leads to greater micelle–micelle interaction.  相似文献   

2.
The activity of lignin peroxidase (LiP) and the partition of its optimum substrate veratryl alcohol (VA) in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/toluene/water reverse micelles were studied in this paper to understand the microheterogeneous effect of the medium on the catalytic properties of LiP hosted in the reverse micelle. Results showed that LiP from Phanerochaete chrysosporium could express its activity in the reverse micelles, but its activity depended, to a great extent, on the composition of the reverse micelles. Optimum activity occurred at a molar ratio of water to AOT (ω0) of 11, a pH value of 3.6, and a volume ratio of isooctane to toluene of 7–9. Under optimum conditions, the half-life of LiP was circa 12 h. The dependence of LiP activity on the volume fraction of water in the medium (θ), at a constant ω0 value of 11, indicated that VA was mainly solubilized in the pseudophase of the reverse micelle. Based on the pseudobiphasic model and the corresponding kinetic method, a linear line can be obtained in a plot of apparent Michaelis constant of VA vs θ, and the partition coefficient of VA between the pseudophase and the organic solvent phase was determined to be 35.8, which was higher than that (22.3) between bulk water and the corresponding mixed organic solvent. H2O2 inhibited LiP at concentrations higher than 80 μM; this concentration value seems to be different from that in aqueous solution (about 3 mM). The differences mentioned above should be ascribed to the microheterogeneity and the interface of the AOT reverse micelle.  相似文献   

3.
In this work, the forward and back extraction of soybean protein by reverse micelles was studied. The reverse micellar systems were formed by anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT), isooctane and KCl solution. The effects of AOT concentration, aqueous pH, KCl concentration and phase volume ratio on the extraction efficiency of soybean protein were tested. Suitability of reverse micelles of AOT and Triton-X-100/AOT mixture in organic solvent toluene for soybean protein extraction was also investigated. The experimental results lead to complete forward extraction at the AOT concentration 120 mmol l−1, aqueous pH 5.5 and KCl concentration 0.8 mol l−1. The backward extraction with aqueous phase (pH 5.5) resulted in 100% extraction of soybean protein from the organic phase.  相似文献   

4.
The hydrolysis of olive oil catalyzed by Candida rugosa lipase in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane and the synthetic sodium bis(2-ethylhexyl polyoxyethylene)sulfosuccinate (MAOT)/isooctane reverse micellar systems was investigated in a polysulfone hollow fiber membrane reactor with recycle of the reaction mixture. Lipase was completely retained by the membrane while olive oil and oleic acid freely passed through. The retention of reverse micelles depended on W 0 (molar ratio of water to surfactant). At an olive oil concentration of 0.23 mol l–1 the final substrate conversion in the MAOT micellar system was about 1.4 times of that in the AOT micellar system.  相似文献   

5.
alpha-Chymotrypsin (CT), spin-labeled at the active site by using an acylating label which constitutes a substrate for this protein, has been investigated in reverse micelles formed by AOT in isooctane. The electron spin resonance spectra provided information on conformation, dynamics and deacylation activity. The dynamics of the label bound to CT appears to be more hindered in reverse micelles than in aqueous solution, probably owing to the effect of the micellar environment on protein conformation. The deacylation rate in reverse micelles does not show the characteristic bell-shaped dependence on water content which is generally found for CT enzymatic activity.  相似文献   

6.
Activation of lignin peroxidase (LIP) in an organic solvent by reversed micelles was investigated. Bis(2-ethylhexyl)sulfosuccinate sodium salt (AOT) was used as a surfactant to form a reversed micelle. Lyophilized LIP from an optimized aqueous solution exhibited no enzymatic activity in any organic solvents examined in this study; however, LIP was catalytically active by being entrapped in the AOT reversed micellar solution. LIP activity in the reversed micelle was enhanced by optimizing either the preparation or the operation conditions, such as water content and pH in water pools of the reversed micelle and the reaction temperature. Stable activity was obtained in isooctane because of the stability of the reversed micelle. The optimal pH was 5 in the reversed micellar system, which shifted from pH 3 in the aqueous solution. The degradation reaction of several environmental pollutants was attempted using LIP hosted in the AOT reversed micelle. Degradation achieved after a 1-h reaction reached 81%, 50%, and 22% for p-nonylphenol, bisphenol A, and 2,4-dichlorophenol, respectively. This is the first report on the utilization of LIP in organic media.  相似文献   

7.
The activity and conformation of lysozyme solubilized in apolar solvents via reverse micelles was investigated. The systems used were sodium di-2-ethylhexylsulfosuccinate (AOT)/isooctane/H2O, cetyltrioctylammoniumbromide (CTAB)/CHCl3, isooctane/H2O; tetraethyleneglycoldodecylether (EO4C12)/isooctane/H2O, and bulk water. CD spectra of lysozyme in reverse micellar solutions were investigated as a function of w0 (= [H2O]/[AOT]) and were compared to the spectra in aqueous solutions. No marked changes were found in the EO4C12 or in the CTAB systems with respect to water, which indicates that no sizeable conformational changes of the enzyme occurred upon solubilization in the reverse micellar systems. In agreement with previous studies [C. Grandi, R. E. Smith, and P. L. Luisi (1981) J. Biol. Chem. 256 , 837–843] dramatic conformational changes can be inferred in the AOT system on the basis of CD studies. This is taken as an indication that the enzyme denatures in this micellar system. This is particularly striking because the enzyme is fully active in AOT reverse micelles. The apparent paradox is solved by the observation that the native CD spectrum (and by inference, the native conformation) is maintained when lysozyme is bound to NAG or NAG3, and by inference, when the substrate is bound, e.g., during enzyme turnover. However, in the absence of added NAG, NAG3, or substrate, the enzyme in the AOT reverse micellar system rapidly denatures. Together with CD studies, fluorescence and nmr data confirm the hypothesis of an irreversible denaturation of lysozyme in the AOT system, the denaturation being slowed down when the substrate is present. The activity of the enzyme has been studied as a function of pH and w0 using the chromophoric substrate 3,4-dinitrophenyl-tetra-N-acetyl-β-D -chitotetraoside (3,4-DNP-NAG4). Generally speaking, the kinetic parameters are comparable to those found in bulk water solution. More detailed, in the CTAB system, kcat tends to be smaller than in aqueous solution (with quite similar KM), whereas in the EO4C12 system (at pH 7.0) the turnover number is larger and KM is smaller than in water. In the AOT system, the kinetic parameters at pH 7.0 are also quite comparable to those found in water.  相似文献   

8.
Chymotrypsin is easily extracted from an aqueous solution into isooctane containing the anionic surfactant aerosol OT (AOT). The concentration of AOT needed to efficiently extract 0.5 mg/mL CMT is as low as 1 mM and as low as 0.2 mM AOT was sufficient to extract the protein into isooctane. The extraction process was unaffected by 10% (v/v) ethyl acetate in the isooctane phase. Moreover, spectroscopic analysis by electron paramagnetic resonance indicated that CMT did not exist inside a discreet water pool of a reversed micelle. Calculations of the number of AOT molecules associated per extracted CMT molecule indicate that only ca. 30 surfactant molecules interact with the protein, a value too low for reversed micellar incorporation of the protein in isooctane. These studies suggested that reversed micelles do not need to be involved in the actual transfer of the protein from the aqueous to the organic phase and protein solubilization in the organic phase is possible in the absence of reversed micelles. Based on these findings, a new mechanism has been proposed herein for protein extraction via the phase transfer method involving ionic surfactants. The central theme of this mechanism is the formation of an electrostatic complex between CMT and AOT at the aqueous/organic interface between AOT and CMT, thereby leading to the formation of a hydrophobic species that partitions into the organic phase. Consistent with this mechanism, the efficiency of extraction is dependent on the interfacial mass transfer, the concentrations of CMT and AOT in the aqueous and organic phases, respectively; the ionic strength of the aqueous phase; and the presence of various cosolvents. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
Uptake hydrogenase negative mutants of bloom forming cyanobacteria (Nostoc and Anabaena) and the fermentative bacteria Rhodopseudomonas palustris P4 were used together for producing hydrogen within the reverse micelles fabricated by N-ethyl hexyl sodium sulfosuccinate (AOT) in isooctane and cetyl trimethyl ammonium bromide (CTAB) in benzene. The rate of H2 production in AOT/isooctane reverse micellar system was found to be more promising in comparison to the CTAB/Benzene reverse micellar entrapment. After mutagenesis in 2.0% (v/v) ethyl methane sulphonate (EMS) mutants of Nostoc and Anabaena were selected on BG-11 plates (containing 2% agar) and then used for analysis of produced hydrogen. In comparison to the unmutated Nostoc with R. palustris (within AOT/isooctane) the coupled system of mutated Nostoc and R. palustris produced H2 by 3.9-fold higher rate, which is 8.6 mmol H2/h/mg protein. Whereas, mutated Anabaena coupled with R. palustris produced 4.8 times higher hydrogen production within (AOT)/isooctane reverse micelles in comparison to the unmutated Anabaena with R. palustris. Effect of nitrogen to carbon ratio (N/C) on hydrogen production was studied and Anabaena/R. palustris and Nostoc/R. palustris systems were, respectively, found to generate 11.2 and 9.8 mmol H2/h/mg protein continuously for 3 days. Effects of temperature and light intensity were also investigated and we found that 32°C temperature and 1,000 Lux light intensity are the optimum values in these systems. Addition of sodium dithionite also resulted in further enhancement of the rate and duration of hydrogen production in both (mutated Nostoc/R. palustris and mutated Anabaena/R.␣palustris) systems.  相似文献   

10.
Protein refolding in reversed micelles   总被引:8,自引:0,他引:8  
A novel process has been developed which uses reversed micelles to isolate denatured protein molecules from each other and allows them to refold individually. These reversed micelles are aqueous phase droplets stabilized by the surfactant AOT and suspended in isooctane. By adjusting conditions such that only one protein molecule is present per reversed micelle, it was possible to achieve independent folding without encountering the problem of aggregation due to interactions with neighboring molecules. The feasibility of this process was demonstrated using bovine pancreatic ribonuclease A as a model system. It was shown that denatured and reduced ribonuclease can be transferred from a buffered solution containing guanidine hydrochloride into reversed micelles to a greater extent than native enzyme under the same conditions. The denaturant concentration can then be significantly reduced in the reversed micellar phase, while retaining most of the protein, by means of extractive contacting stages with a denaturant-free aqueous solution. Denatured and reduced ribonuclease will subsequently recover full activity inside reversed micelles within 24 h upon addition of a mixture of reduced and oxidized glutathione to reoxidize disulfide bonds. Extraction of this refolded enzyme from reversed micelles back into aqueous solution can be accomplished by contacting the reversed micelle phase with a high ionic strength (1.0M KCl) aqueous solution containing ethyl acetate.  相似文献   

11.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacteriumviscosum lipase (glycerol–ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30–40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

12.
Hydrophilized and hydrophobized forms of the lipase from Mucor miehei were obtained by its chemical modification with cellobiose and N-succinimidyl palmitate with a modification degree of 4 in both cases. A comparative analysis of the regulation of the catalytic activities of the native and modified lipases was carried out in the system of reversed micelles of OT aerosol (AOT) in isooctane. The level of catalytic activity of all the lipase preparations in the micellar medium was found to be higher than that in aqueous solution. The chemical modification of lipase did not result in a change in the regulation of the oligomeric composition of the enzyme controlled by the degree of micelle hydration Ω0 (micelle size). The k cat dependences on Ω0 for each lipase preparation exhibit two maxima, corresponding to the functioning of lipase monomers and tetramers. The changes in the hydrophilic-lipophilic balance of the lipase surface significantly affect the character of the regulation of enzyme activity due to changes in the surfactant concentration (the number of micelles). The lipase hydrophobization results in a decrease in the enzyme activation effect with an increase in the AOT concentration in comparison with the native lipase. The lipase hydrophilization dramatically decreases the activity of lipase tetramer when the AOT concentration is increased. The catalytic activity of the monomer of hydrophilized lipase is practically independent of the AOT concentration. Kinetic data indicate a mixed type of activation of both oligomeric forms of the native and the hydrophobized lipase by AOT molecules and the noncompetitive type of the activation and AOT inhibition of the monomer and the tetramer of the hydrophilized lipase, respectively.  相似文献   

13.
Reverse micelles formed by soybean lecithin in isooctane were used as a reaction medium for both the lipase-catalyzed hydrolysis as well as the synthesis of lipids. Neither reaction appears to follow Michaelis-Menten kinetics and it is suggested that the rates are diffusion controlled. The hydrolysis of para-nitrophenylpalmitate (PNPP) and, in particular, the pH-dependency of the lipase-catalyzed hydrolysis was then examined. The highest rate of reaction occurred at pHopt = 5–5.5, which was the same in water and lecithin reverse micelles, as well as in reverse micelles formed by bis(2-ethylhexyl)-sulfosuccinate (AOT) in isooctane. The dependence of the reaction rate on the water content of the micellar system was investigated for the same reaction. The maximal rate was found at an extremely low water content, i.e. at Wo = 2.2 (Wo = [H2O]/[Lecithin]). The temperature stability of the lipase in lecithin reverse micelles was also studied and found to be greater than in aqueous solutions. Studies of the dependence of the relative initial velocity on temperature have shown that the highest rate in reverse micelles is obtained at 60d`C.  相似文献   

14.
Reverse micelles are formed in apolar solvents by spontaneous aggregation of surfactants. Surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) is most often used for the reverse micellar extraction of enzymes. However, the inactivation of enzyme due to strong interaction with AOT molecules is a severe problem. To overcome this problem, the AOT/water/isooctane reverse micellar system was modified by adding short chain polyethylene glycol 400 (PEG 400). The modified AOT reverse micellar system was used to extract Mucor javanicus lipase from the aqueous phase to the reverse micellar phase. The extraction efficiency (E) increased with the increase in PEG 400 addition and the maximum E in PEG 400 modified system was twofold higher than that in the PEG 400-free system. Upon addition of PEG 400, the water activity (a(w)) of aqueous phase decreased, whereas a(w) of reverse micellar phase increased. The circular dichroism spectroscopy analysis revealed that PEG 400 changes the secondary and tertiary structure of lipase. The maximum specific activity of lipase extracted in PEG 400-modified reverse micellar system was threefold higher than that in the PEG-free system.  相似文献   

15.
The enzymatic conversion of cholesterol to cholestenone by cholesterol oxidase (Brevibacterium sp.)in reversed micelles in a system composed of AOT/isooctane/water/cholesterol has been examined. The catalytic activity of the enzyme was correlated with the physicochemical properties of water in water-in-oil (w/o) microemulsion systems. In a system consisting of 3 wt % AOT in isooctane, reversed micelles started to form as the [H(2)O]/[AOT] (e.g., the w(0)) ratio increased above 4-5. The formation of reversed micelles with a core of neat (bulk) water was verified from determinations of both the partial molar volume of water and the scissors vibration of water [with Fourier transform infrared (FTIR) spectroscopy] in the w/o microemulsion systems. A plot of enzyme activity vs. w(0) indicated that the hydration of enzyme molecules per se was not sufficient to give rise to catalytic activity. Instead, it appeared that the formation of an aqueous micellar core was necessary for full activation of the enzyme. Based on micelle size distribution analysis, it was estimated that about one micelle per one thousand contained an enzyme molecule. Since the apparent reaction rate could be markedly enhanced by increasing the enzyme/water ratio, we conclude that the number of enzyme-containing micelles was an important rate-limiting factor in the system.  相似文献   

16.
An enzymatic system for the regeneration of redox cofactors NADH and NADPH was investigated in nanostructural reverse micelles using bacterial glycerol dehydrogenase (GLD) and soluble transhydrogenase (STH). Catalytic conversion of NAD+ to NADH was realized in the sodium dioctylsulfosuccinate (AOT)/isooctane reverse micellar system harboring GLD and a sacrificial substrate, glycerol. The initial rate of NADH regeneration was enhanced by exogenous addition of ammonium sulfate into the reverse micelles, suggesting that NH4+ acts as a monovalent cationic activator. STH was successfully entrapped in the AOT/isooctane reverse micelles as well as GLD and was revealed to be capable of catalyzing the stoichiometric hydrogen transfer reaction between NADP+ and NADPH in reverse micelles. These results indicate that GLD and STH have potential for use in redox cofactor recycling in reverse micelles, which allows the use of catalytic quantities of NAD(P)H in organic media.  相似文献   

17.
Trypsin and alpha-chymotrypsin were immobilized by gelentrapment in polyacrylamide cross-linked with N,N(1)-methylenebisacrylamide. The immobilized enzymes are catalytically efficient in suspensions of reverse micelles formed in isooctane by bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and water. Both entrapped enzymes are stable in reverse micellar suspension at room temperature and pH 8.2 for 3 days and lose 30-40% activity after 1 week. The enzymes obey Michaelis-Menten kinetics in the investigated concentration range with K(m) values higher than those in solution. Activity of the enzymes is independent of the water content of the micellar solution. No shift in pH optimum was observed for immobilized trypsin activity toward Nalpha-benzoyl-L-arginine ethyl ester. The utility of the procedure, which combines the advantage of enzyme immobilization and enzymology in reverse micelles, is illustrated by an example of peptide synthesis. In particular, peptide synthesis (e. g., Z--Ala--Phe--Leu--NH(2)) using water-insoluble substrate has been performed with gelentrapped alpha-chymotrypsin in reverse micellar suspension with the advantage of efficient enzyme recycling.  相似文献   

18.
The activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micellar droplets have been investigated spectrophotometrically. Various physical parameters, e.g., water pool size, w(0), pH, and temperature, were optimized for YADH in water/AOT/isooctane reverse micelles. It was found that the enzyme exhibits maximum activity at w(0) = 28 and pH 8.1. It was more active in reverse micelles than in aqueous buffers at a particular temperature and was denatured at about 307deg;C in both the systems. At a particular temperature YADH entrapped in reverse micelles was less stable than when it was dissolved in aqueous buffer.  相似文献   

19.
The modification of reverse micellar systems composed of AOT, isooctane, water by the addition of aprotic solvents has been performed. The impact of this change on the activity, stability and kinetics of solubilized Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3) was investigated. Of seven aprotic solvents tested, dimethyl sulfoxide (DMSO) was found to be most effective. It was found that lipase activity was enhanced by optimizing some relevant parameters, such as water–AOT molar ratio (W0), buffer pH and surfactant concentration. A kinetic model that considers the free substrate in equilibrium with the substrate adsorbed on the micellar surface was successfully used to deduce some kinetic parameters (Vmax, Km and Kad), and the values of Km and Kad were significantly reduced by the presence of DMSO. Higher lipase stability was found in AOT reverse micelles with DMSO compared with that in simple AOT systems with half-life of 125 and 33 days, respectively. Fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to elucidate the effects of DMSO on the properties of AOT reverse micelles.  相似文献   

20.
Refolding of denatured RNase A as a model of inclusion bodies was performed by reversed micelles formulated with sodium di-2-ethylhexyl sulfosuccinate (AOT) in isooctane. In the novel refolding process, a solid-liquid extraction was utilized as an alternative to the ordinary protein extraction by reversed micelles based on a liquid-liquid extraction. First, the effects of operational parameters such as concentration of AOT, W(o) (= [H(2)O]/[AOT]), and pH were examined on the solubilization of solid denatured proteins into a reversed micellar solution. The solubilization was facilitated by a high AOT concentration, a high W(o) value, and a high pH in water pools. These conditions are favorable for the dispersion of the solid protein aggregates in an organic solvent. Second, the renaturation of the denatured RNase A solubilized into the reversed micellar solution was conducted by addition of glutathione as a redox reagent. A complete renaturation of RNase A was accomplished by adjusting the composition of the redox reagent even at a high protein concentration in which protein aggregation would usually occur in aqueous media. In addition, the renaturation rates were improved by optimizing water content (W(o)) and the pH of water pools in reversed micelles. Finally, the recovery of renatured RNase A from the reversed micellar solution was performed by adding a polar organic solvent such as acetone into the reversed micellar solution. This precipitation method was effective for recovering proteins from reversed micellar media without any significant reduction in enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号