首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole‐body absorption values in a 1‐year‐old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole‐body absorptions (SARwb), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SARwb values (up to 65%) for the 1‐year‐old child than signals at higher frequencies due to the body size‐dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male. Bioelectromagnetics 33:682–694, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Radiofrequency radiation (RFR) causes heating, which can lead to detrimental biological effects. To characterize the effects of RFR exposure on body temperature in relation to animal size and pregnancy, a series of short‐term toxicity studies was conducted in a unique RFR exposure system. Young and old B6C3F1 mice and young, old, and pregnant Harlan Sprague‐Dawley rats were exposed to Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) RFR (rats = 900 MHz, mice = 1,900 MHz) at specific absorption rates (SARs) up to 12 W/kg for approximately 9 h a day for 5 days. In general, fewer and less severe increases in body temperature were observed in young than in older rats. SAR‐dependent increases in subcutaneous body temperatures were observed at exposures ≥6 W/kg in both modulations. Exposures of ≥10 W/kg GSM or CDMA RFR induced excessive increases in body temperature, leading to mortality. There was also a significant increase in the number of resorptions in pregnant rats at 12 W/kg GSM RFR. In mice, only sporadic increases in body temperature were observed regardless of sex or age when exposed to GSM or CDMA RFR up to 12 W/kg. These results identified SARs at which measurable RFR‐mediated thermal effects occur, and were used in the selection of exposures for subsequent toxicology and carcinogenicity studies. Bioelectromagnetics. 39:190–199, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

3.
A framework for the combination of near‐field (NF) and far‐field (FF) radio frequency electromagnetic exposure sources to the average organ and whole‐body specific absorption rates (SARs) is presented. As a reference case, values based on numerically derived SARs for whole‐body and individual organs and tissues are combined with realistic exposure data, which have been collected using personal exposure meters during the Swiss Qualifex study. The framework presented can be applied to any study region where exposure data is collected by appropriate measurement equipment. Based on results derived from the data for the region of Basel, Switzerland, the relative importance of NF and FF sources to the personal exposure is examined for three different study groups. The results show that a 24‐h whole‐body averaged exposure of a typical mobile phone user is dominated by the use of his or her own mobile phone when a Global System for Mobile Communications (GSM) 900 or GSM 1800 phone is used. If only Universal Mobile Telecommunications System (UMTS) phones are used, the user would experience a lower exposure level on average caused by the lower average output power of UMTS phones. Data presented clearly indicate the necessity of collecting band‐selective exposure data in epidemiological studies related to electromagnetic fields. Bioelectromagnetics 34:366–374, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Assessing the whole‐body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi‐path exposure method for heterogeneous realistic human body models. The method is applied for the 6‐year‐old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole‐body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole‐body SAR in the VFB for multi‐path exposure exceeds the whole‐body SAR for worst‐case single‐incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole‐body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Bioelectromagnetics 34:240–251, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The development and analysis of three waveguides for the exposure of small biological in vitro samples to mobile communication signals at 900 MHz (GSM, Global System for Mobile Communications), 1.8 GHz (GSM), and 2 GHz (UMTS, Universal Mobile Telecommunications System) is presented. The waveguides were based on a fin‐line concept and the chamber containing the samples bathed in extracellular solution was placed onto two fins with a slot in between, where the exposure field concentrates. Measures were taken to allow for patch clamp recordings during radiofrequency (RF) exposure. The necessary power for the achievement of the maximum desired specific absorption rate (SAR) of 20 W/kg (average over the mass of the solution) was approximately Pin = 50 mW, Pin = 19 mW, and Pin = 18 mW for the 900 MHz, 1800 MHz, and 2 GHz devices, respectively. At 20 W/kg, a slight RF‐induced temperature elevation in the solution of no more than 0.3 °C was detected, while no thermal offsets due to the electromagnetic exposure could be detected at the lower SAR settings (2, 0.2, and 0.02 W/kg). A deviation of 10% from the intended solution volume yielded a calculated SAR deviation of 8% from the desired value. A maximum ±10% variation in the local SAR could occur when the position of the patch clamp electrode was altered within the area where the cells to be investigated were located. Bioelectromagnetics 32:102–112, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The objectives of this study were to assess total exposure to radiofrequency electromagnetic fields (RF-EMF) in bedrooms and the contribution of different radioservices (FM radio, analogue TV and DVB-T, TETRA, GSM900 downlink, GSM1800 downlink, UMTS downlink, DECT, and wireless LAN and blue tooth) to the total exposure. Additional aims were to describe the proportion of measuring values above the detection limit of the dosimeters and to characterize the differences in exposure patterns associated with self-reported residential characteristics. Exposure to RF sources in bedrooms was measured using Antennessa? EME Spy 120 dosimeters in 1,348 households in Germany; 280 measures were available for each frequency band per household. Mean electrical field strengths and power flux densities were calculated. Power flux densities allow the calculation of proportions of different radioservices on total exposure. Exposure was often below the detection limit (electrical field strength: 0.05 V/m) of the dosimeter. Total exposure varied, depending on residential characteristics (urban vs. rural areas and floor of a building the measurement took place). Major sources of exposure were cordless phones (DECT standard) and wireless LAN/blue tooth contributing about 82% of total exposure (20.5 μW/m2). Exposure to RF-EMF is ubiquitous, but exposure levels are—if at all measurable—very low and far below the ICNIRP’s exposure reference levels.  相似文献   

7.
The aim of this project was to develop an animal exposure system for the biological effect studies of radio frequency fields from handheld wireless telephones, with energy deposition in animal brains comparable to those in humans. The finite‐difference time‐domain (FDTD) method was initially used to compute specific absorption rate (SAR) in an ellipsoidal rat model exposed with various size loop antennas at different distances from the model. A 3 × 1 cm rectangular loop produced acceptable SAR patterns. A numerical rat model based on CT images was developed by curve‐fitting Hounsfield Units of CT image pixels to tissue dielectric properties and densities. To design a loop for operating at high power levels, energy coupling and impedance matching were optimized using capacitively coupled feed lines embedded in a Teflon rod. Sprague Dawley rats were exposed with the 3 × 1 cm loop antennas, tuned to 837 or 1957 MHz for thermographically determined SAR distributions. Point SARs in brains of restrained rats were also determined thermometrically using fiberoptic probes. Calculated and measured SAR patterns and results from the various exposure configurations are in general agreement. The FDTD computed average brain SAR and ratio of head to whole body absorption were 23.8 W/kg/W and 62% at 837 MHz, and 22.6 W/kg/W and 89% at 1957 MHz. The average brain to whole body SAR ratio was 20 to 1 for both frequencies. At 837 MHz, the maximum measured SAR in the restrained rat brains was 51 W/kg/W in the cerebellum and 40 W/kg/W at the top of the cerebrum. An exposure system operating at 837 MHz is ready for in vivo biological effect studies of radio frequency fields from portable cellular telephones. Two‐tenths of a watt input power to the loop antenna will produce 10 W/kg maximum SAR, and an estimated 4.8 W/kg average brain SAR in a 300 g medium size rat. Bioelectromagnetics 20:75–92, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
We have developed a carrousel irradiator for mice which delivers a head‐first and near‐field radiofrequency exposure that more closely simulates cellular telephone and radio use than conventional whole body exposure systems. Mouse cadavers were placed on the carrousel irradiator and exposed with their noses 5 mm from the feedpoint of a 1.6 GHz antenna. Local measured specific absorption rates (SAR) in brain regions corresponding to the frontal cortex, medial caudate putamen, and midhippocampal areas were 2.9, 2.4, and 2.2 W/kg per watt of irradiated power, respectively. In addition, average SAR was estimated to be 3.4 W/kg per watt along the sagittal plane of the brain, 2.0 W/kg per watt along the sagittal plane of the body, and between 6.8 and 8.1 W/kg per watt at peak locations along the sagittal plane at the body surface. This detailed SAR information in mice is critical to the interpretation of biological studies of IRIDIUM exposure, and similar analysis should be included for all studies of in vivo exposure of small animals to microwaves. Bioelectromagnetics 20:42–47, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann–Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.  相似文献   

10.
An exposure system, consisting of four identical cylindrical waveguide chambers, was developed for studying the effects of radiofrequency (RF) energy on laboratory mice at a frequency of 1.9 GHz. The chamber was characterized for RF dose rate as a function of animal body mass and dose rate variations due to animal movement in the cage. Dose rates were quantified in terms of whole‐body average (WBA) specific absorption rate (SAR), brain average (BA) SAR and peak spatial‐average (PSA) SAR using measurement and computational methods. Measurements were conducted on mouse cadavers in a multitude of possible postures and positions to evaluate the variations of WBA‐SAR and its upper and lower bounds, while computations utilizing the finite‐difference time‐domain method together with a heterogeneous mouse model were performed to determine variations in BA‐SAR and the ratio of PSA‐SAR to WBA‐SAR. Measured WBA‐SAR variations were found to be within the ranges of 9–23.5 W/kg and 5.2–13.8 W/kg per 1 W incident power for 20 and 40 g mice, respectively. Computed BA‐SAR variations were within the ranges of 3.2–10.1 W/kg and 3.3–9.2 W/kg per 1 W incident power for 25 and 30 g mouse models, respectively. Ratios of PSA‐SAR to WBA‐SAR, averaged over 0.5 mg and 5 mg tissue volumes, were observed to be within the ranges of 6–15 and 4–10, respectively. Bioelectromagnetics 33:575–584, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
We report new data regarding the molecular mechanisms of GSM‐induced increase of cell endocytosis rate. Even though endocytosis represents an important physical and biological event for cell physiology, studies on modulated electromagnetic fields (EMF) effects on this process are scarce. In a previous article, we showed that fluid phase endocytosis rate increases when cultured cells are exposed to 900 MHz EMF similar to mobile phones' modulated GSM signals (217 Hz repetition frequency, 576 µs pulse width) and to electric pulses similar to the GSM electrical component. Trying to distinguish the mechanisms sustaining this endocytosis stimulation, we exposed murine melanoma cells to Lucifer Yellow (LY) or to GSM–EMF/electric pulses in the presence of drugs inhibiting the clathrin‐ or the caveolin‐dependent endocytosis. Experiments were performed at a specific absorption rate (SAR) of 3.2 W/kg in a wire patch cell under homogeneously distributed EMF field and controlled temperature (in the range of 28.5–29.5 °C). Thus, the observed increase in LY uptake was not a thermal effect. Chlorpromazine and ethanol, but not Filipin, inhibited this increase. Therefore, the clathrin‐dependent endocytosis is stimulated by the GSM–EMF, suggesting that the cellular mechanism affected by the modulated EMF involves vesicles that detach from the cell membrane, mainly clathrin‐coated vesicles. Bioelectromagnetics 30:222–230, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
This study is aimed at evaluating the effect of microwave radiation on human brain bioelectric activity at different levels of exposure. For this purpose, 450 MHz microwave exposure modulated at 40 Hz frequency was applied to a group of 15 healthy volunteers at two different specific absorption rate (SAR) levels: a higher level of 0.303 W/kg (field strength 24.5 V/m) and a lower level of 0.003 W/kg (field strength 2.45 V/m). Ten exposure cycles (1 min off and 1 min on) at fixed SAR values were applied. A resting eyes‐closed electroencephalogram (EEG) was continuously recorded. Results showed a statistically significant increase in the EEG power in the EEG beta2 (157%), beta1 (61%) and alpha (68%) frequency bands at the higher SAR level, and in the beta2 (39%) frequency band at the lower SAR level. Statistically significant changes were detected for six individual subjects in the EEG alpha band and four subjects in the beta1 and beta2 bands at the higher SAR level; three subjects were affected in the alpha, beta1 and beta2 bands at the lower SAR level. The study showed that decreasing the SAR 100 times reduced the related changes in the EEG three to six times and the number of affected subjects, but did not exclude the effect. Bioelectromagnetics 34:264–274, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Ejaculated, density purified, human spermatozoa were exposed to pulsed 900 MHz GSM mobile phone radiation at two specific absorption rate levels (SAR 2.0 and 5.7 W/kg) and compared with controls over time. Change in sperm mitochondrial membrane potential was analysed using flow cytometry. Sperm motility was determined by computer assisted sperm analysis (CASA). There was no effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential. This was also the case for all kinematic parameters assessed at a SAR of 2.0 W/kg. However, over time, the two kinematic parameters straight line velocity (VSL) and beat-cross frequency (BCF) were significantly impaired (P < 0.05) after the exposure at SAR 5.7 W/kg and no exposure by time interaction was present. This result should not be ascribed to thermal effects, due to the cooling methods employed in the RF chamber and temperature control within the incubator.  相似文献   

14.
The present study was designed to evaluate whether gestational exposure to an EMF targeting the head region, similar to that from cellular phones, might affect embryogenesis in rats. A 1.95‐GHz wide‐band code division multiple access (W‐CDMA) signal, which is one applied for the International Mobile Telecommunication 2000 (IMT‐2000) system and used for the freedom of mobile multimedia access (FOMA), was employed for exposure to the heads of four groups of pregnant CD(SD) IGS rats (20 per group) for gestational days 7–17. The exposure was performed for 90 min/day in the morning. The spatial average specific absorption rate (SAR) for individual brains was designed to be 0.67 and 2.0 W/kg with peak brain SARs of 3.1 and 7.0 W/kg for low (group 3) and high (group 4) exposures, respectively, and a whole‐body average SAR less than 0.4 W/kg so as not to cause thermal effects due to temperature elevation. Control and sham exposure groups were also included. At gestational day 20, all dams were killed and fetuses were taken out by cesarean section. There were no differences in maternal body weight gain. No adverse effects of EMF exposure were observed on any reproductive and embryotoxic parameters such as number of live (243–271 fetuses), dead or resorbed embryos, placental weights, sex ratios, weights or external, visceral or skeletal abnormalities of live fetuses. Bioelectromagnetics 30:205–212, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
Abstract

Antennas from various wireless communications systems [e.g. mobile phones base transceiver stations (BTS) and handsets used by passengers, public Internet access, staff radiophone transmitters used between engine-drivers and traffic operators] emitting radiofrequency electromagnetic radiation (RF-EMR) are used inside underground metro public transportation. Frequency-selective exposimetric investigations of RF-EMR exposure inside the metro infrastructure in Warsaw (inside metro cars passing between stations and on platforms) were performed. The statistical parameters of exposure to the E-field were analyzed for each frequency range and for a total value (representing the wide-band result of measurements of complex exposure). The recorded exposimetric profiles showed the dominant RF-EMR sources: handsets and BTS of mobile communication systems (GSM 900 and UMTS 2100) and local wireless Internet access (WiFi 2G). Investigations showed that the GSM 900 system is the dominant source of exposure – BTS (incessantly active) on platforms, and handsets – used by passengers present nearby during the tube drive. The recorded E-field varies between sources (for BTS were: medians – 0.22?V/m and 75th percentile – 0.37?V/m; and for handsets: medians – 0.28?V/m and 75th percentile – 0.47?V/m). Maximum levels (peaks) of exposure recorded from mobile handsets exceeded 10?V/m (upper limit of used exposimeters). Broadband measurements of E-field, including the dominant signal emitted by staff radiophones (151?MHz), showed that the level of this exposure of engine-drivers does not exceed 2.5?V/m.  相似文献   

16.
Wireless mobile phones and other telecommunication devices are used extensively in daily life. We therefore examined the effects of combined exposure to radiofrequency electromagnetic fields (RF‐EMF) on rat testicular function, specifically with respect to sensitive processes such as spermatogenesis. Male rats were exposed to single code division multiple access (CDMA) and wideband code division multiple access (WCDMA) RF signals for 12 weeks. The RF exposure schedule comprised 45 min/day, 5 days/week for a total of 12 weeks. The whole‐body average specific absorption rate (SAR) of CDMA and WCDMA was 2.0 W/kg each or 4.0 W/kg in total. We then investigated the correlates of testicular function such as sperm count in the cauda epididymis, testosterone concentration in the blood serum, malondialdehyde concentrations in the testes and epididymis, frequency of spermatogenesis stages, and appearance of apoptotic cells in the testes. We also immunoblotted for p53, bcl2, GADD45, cyclin G, and HSP70 in the testes of sham‐ and combined RF‐exposed animals. Based on the results, we concluded that simultaneous exposure to CDMA and WCDMA RF‐EMFs at 4.0 W/kg SAR did not have any observable adverse effects on rat spermatogenesis. Bioelectromagnetics 33:356–364, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
The aim of this study was a dosimetrical analysis of an experimental setup used in the exposure of 10 female volunteers to GSM 900 radiation. The exposure was carried out by irradiating a small region of the right forearms of the volunteers for 1 h, after which biopsies were taken from the exposed skin for protein analysis. The source of irradiation was a half-wave dipole fed with a computer controlled GSM phone. The specific absorption rate (SAR) induced in the skin biopsy was assessed by computer simulations. The numerical model of the arm consisted of a muscle tissue simulating cylinder covered with thin skin (1 mm) and fat (3 mm) layers. The simulation models were validated by measurements with a homogeneous cylindrical liquid phantom. The average SAR value in the biopsy was 1.3 W/kg and the estimated uncertainty +/-20% (K = 2). The main source of error was found to be variations in the distance of the forearm from the dipole (10 +/- 1 mm). Other significant sources of uncertainty are individual variations of the fat layer and arm thicknesses, and the uncertainty of radio frequency (RF) power measurement.  相似文献   

18.
We examined the histological changes by radiofrequency (RF) fields on rat testis, specifically with respect to sensitive processes such as spermatogenesis. Male rats were exposed to 848.5 MHz RF for 12 weeks. The RF exposure schedule consisted of two 45‐min RF exposure periods, separated by a 15‐min interval. The whole‐body average specific absorption rate (SAR) of RF was 2.0 W/kg. We then investigated correlates of testicular function such as sperm counts in the cauda epididymis, malondialdehyde concentrations in the testes and epididymis, frequency of spermatogenesis stages, germ cell counts, and appearance of apoptotic cells in the testes. We also performed p53, bcl‐2, caspase 3, p21, and PARP immunoblotting of the testes in sham‐ and RF‐exposed animals. Based on these results, we concluded that subchronic exposure to 848.5 MHz with 2.0 W/kg SAR RF did not have any observable adverse effects on rat spermatogenesis. Bioelectromagnetics 31:528–534, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Previous investigations of exposure to electric, magnetic, or electromagnetic fields (EMF) in households were either about electricity supply EMFs or radio frequency EMFs (RF‐EMFs). We report results from spot measurements at the bedside that comprise electrostatic fields, extremely low‐frequency electric fields (ELF‐EFs), extremely low‐frequency magnetic fields (ELF‐MFs), and RF‐EMFs. Measurements were taken in 226 households throughout Lower Austria. In addition, effects of simple reduction measures (e.g., removal of clock radios or increasing their distance from the bed, turning off Digital Enhanced Cordless Telecommunication (DECT) telephone base stations) were assessed. All measurements were well below International Commission on Non‐Ionizing Radiation Protection (ICNIRP) guideline levels. Average night‐time ELF‐MFs (long‐term measurement from 10 pm to 6 am, geometric mean over households) above 100 nT were obtained in 2.3%, and RF‐EMFs above 1000 µW/m2 in 7.1% of households. Highest ELF‐EFs were primarily due to lamps beside the bed (max = 166 V/m), and highest ELF‐MFs because of transformers of devices (max = 1030 nT) or high current of power lines (max = 380 nT). The highest values of RF‐EMFs were caused by DECT telephone base stations (max = 28979 µW/m2) and mobile phone base stations (max = 4872 µW/m2). Simple reduction measures resulted in an average decrease of 23 nT for ELF‐MFs, 23 V/m for ELF‐EFs, and 246 µW/m2 for RF‐EMFs. A small but statistically significant correlation between ELF‐MF exposure and overall RF‐EMF levels of R = 0.16 (P = 0.008) was computed that was independent of type (flat, single family) and location (urban, rural) of houses. Bioelectromagnetics 31:200–208, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
To analyze possible effects of microwaves on gene expression, mice were exposed to global system for mobile communication (GSM) 1800 MHz signal for 1 h at a whole body SAR of 1.1 W/kg. Gene expression was studied in the whole brain, where the average SAR was 0.2 W/kg, by expression microarrays containing over 22,600 probe sets. Comparison of data from sham and exposed animals showed no significant difference in gene expression modulation. However, when less stringent constraints were adopted to analyze microarray results, 75 genes were found to be modulated following exposure. Forty-two probes showed fold changes ranging from 1.5 to 2.8, whereas 33 were down-regulated from 0.67- to 0.29-fold changes, but these differences in gene expression were not confirmed by real-time PCR. Under these specific limited conditions, no consistent indication of gene expression modulation in whole mouse brain was found associated to GSM 1800 MHz exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号