首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the histological changes by radiofrequency (RF) fields on rat testis, specifically with respect to sensitive processes such as spermatogenesis. Male rats were exposed to 848.5 MHz RF for 12 weeks. The RF exposure schedule consisted of two 45‐min RF exposure periods, separated by a 15‐min interval. The whole‐body average specific absorption rate (SAR) of RF was 2.0 W/kg. We then investigated correlates of testicular function such as sperm counts in the cauda epididymis, malondialdehyde concentrations in the testes and epididymis, frequency of spermatogenesis stages, germ cell counts, and appearance of apoptotic cells in the testes. We also performed p53, bcl‐2, caspase 3, p21, and PARP immunoblotting of the testes in sham‐ and RF‐exposed animals. Based on these results, we concluded that subchronic exposure to 848.5 MHz with 2.0 W/kg SAR RF did not have any observable adverse effects on rat spermatogenesis. Bioelectromagnetics 31:528–534, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
There are public concerns regarding possible carcinogenic or cancer-promoting effects of radiofrequency electromagnetic fields (RF-EMFs) because of the extensive use of wireless mobile phones and other telecommunication devices in daily life. However, so far it is unclear if non-thermal exposure of single EMF exposure in animal studies has a direct influence on carcinogenesis. Here, carcinogenic effects of combined signal RF-EMFs on AKR/J mice, which were used for the lymphoma animal model, were investigated. Six-week-old AKR/J mice were simultaneously exposed to two types of RF signals: single code division multiple access (CDMA) and wideband code division multiple access (WCDMA). AKR/J mice were exposed to combined RF-EMFs for 45 min/day, 5 days/week, for a total of 42 weeks. The whole-body average specific absorption rate (SAR) of CDMA and WCDMA fields was 2.0 W/kg each, 4.0 W/kg in total. When we examined final survival, lymphoma incidence, and splenomegaly incidence, no differences were found between sham- and RF-exposed mice. However, occurrence of metastasis infiltration to the brain in lymphoma-bearing mice was significantly different in RF-exposed mice when compared to sham-exposed mice, even though no consistent correlation (increase or decrease) was observed between male and female mice. However, infiltration occurrence to liver, lung, and spleen was not different between the groups. From the results, we suggested that simultaneous exposure to CDMA and WCDMA RF-EMFs did not affect lymphoma development in AKR/J mice.  相似文献   

3.
As part of a comprehensive investigation of the potential genotoxicity of radiofrequency (RF) signals emitted by cellular telephones, in vitro studies evaluated the induction of DNA and chromosomal damage in human blood leukocytes and lymphocytes, respectively. The signals were voice modulated 837 MHz produced by an analog signal generator or by a time division multiple access (TDMA) cellular telephone, 837 MHz generated by a code division multiple access (CDMA) cellular telephone (not voice modulated), and voice modulated 1909.8 MHz generated by a global system of mobile communication (GSM)-type personal communication systems (PCS) cellular telephone. DNA damage (strand breaks/alkali labile sites) was assessed in leukocytes using the alkaline (pH>13) single cell gel electrophoresis (SCG) assay. Chromosomal damage was evaluated in lymphocytes mitogenically stimulated to divide postexposure using the cytochalasin B-binucleate cell micronucleus assay. Cells were exposed at 37+/-1 degrees C, for 3 or 24 h at average specific absorption rates (SARs) of 1.0-10.0 W/kg. Exposure for either 3 or 24 h did not induce a significant increase in DNA damage in leukocytes, nor did exposure for 3 h induce a significant increase in micronucleated cells among lymphocytes. However, exposure to each of the four RF signal technologies for 24 h at an average SAR of 5.0 or 10.0 W/kg resulted in a significant and reproducible increase in the frequency of micronucleated lymphocytes. The magnitude of the response (approximately four fold) was independent of the technology, the presence or absence of voice modulation, and the frequency (837 vs. 1909.8 MHz). This research demonstrates that, under extended exposure conditions, RF signals at an average SAR of at least 5.0 W/kg are capable of inducing chromosomal damage in human lymphocytes.  相似文献   

4.
The present study was designed to evaluate whether gestational exposure to an EMF targeting the head region, similar to that from cellular phones, might affect embryogenesis in rats. A 1.95‐GHz wide‐band code division multiple access (W‐CDMA) signal, which is one applied for the International Mobile Telecommunication 2000 (IMT‐2000) system and used for the freedom of mobile multimedia access (FOMA), was employed for exposure to the heads of four groups of pregnant CD(SD) IGS rats (20 per group) for gestational days 7–17. The exposure was performed for 90 min/day in the morning. The spatial average specific absorption rate (SAR) for individual brains was designed to be 0.67 and 2.0 W/kg with peak brain SARs of 3.1 and 7.0 W/kg for low (group 3) and high (group 4) exposures, respectively, and a whole‐body average SAR less than 0.4 W/kg so as not to cause thermal effects due to temperature elevation. Control and sham exposure groups were also included. At gestational day 20, all dams were killed and fetuses were taken out by cesarean section. There were no differences in maternal body weight gain. No adverse effects of EMF exposure were observed on any reproductive and embryotoxic parameters such as number of live (243–271 fetuses), dead or resorbed embryos, placental weights, sex ratios, weights or external, visceral or skeletal abnormalities of live fetuses. Bioelectromagnetics 30:205–212, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Peripheral blood samples collected from four healthy nonsmoking human volunteers were diluted with tissue culture medium and exposed in vitro for 24 h to 847.74 MHz radiofrequency (RF) radiation (continuous wave), a frequency employed for cellular telephone communications. A code division multiple access (CDMA) technology was used with a nominal net forward power of 75 W and a nominal power density of 950 W/m(2) (95 mW/cm(2)). The mean specific absorption rate (SAR) was 4.9 or 5.5 W/kg. Blood aliquots that were sham-exposed or exposed in vitro to an acute dose of 1.5 Gy of gamma radiation were included in the study as controls. The temperatures of the medium during RF-radiation and sham exposures in the Radial Transmission Line facility were controlled at 37 +/- 0.3 degrees C. Immediately after the exposures, lymphocytes were cultured at 37 +/- 1 degrees C for 48 or 72 h. The extent of genetic damage was assessed from the incidence of chromosome aberrations and micronuclei. The kinetics of cell proliferation was determined from the mitotic indices in 48-h cultures and from the incidence of binucleate cells in 72-h cultures. The data indicated no significant differences between RF-radiation-exposed and sham-exposed lymphocytes with respect to mitotic indices, frequencies of exchange aberrations, excess fragments, binucleate cells, and micronuclei. The response of gamma-irradiated lymphocytes was significantly different from that of both RF-radiation-exposed and sham-exposed cells for all of these indices. Thus there was no evidence for induction of chromosome aberrations and micronuclei in human blood lymphocytes exposed in vitro for 24 h to 847.74 MHz RF radiation (CDMA) at SARs of 4.9 or 5.5 W/kg.  相似文献   

6.
The intracranial 9L tumor model was used to determine if exposure to a radiofrequency (RF) electromagnetic field similar to those used in cellular telephone has any effects on the growth of a central nervous system tumor. Fischer 344 rats implanted with different numbers of 9L gliosarcoma cells were exposed to 835.62 MHz frequency-modulated continuous wave (FMCW) or 847.74 MHz code division multiple access (CDMA) RF field with nominal slot-average specific absorption rates in the brain of 0.75 +/- 0.25 W/kg. The animals were exposed to the RF field for 4 h a day, 5 days a week starting 4 weeks prior to and up to 150 days after the implantation of tumor cells. Among sham-exposed animals injected with 2 to 10 viable cells (group 1), the median survival was 70 days, with 27% of the animals surviving at 150 days. The median survival length and final survival fraction for animals injected with 11 to 36 viable cells (group 2) were 52 days and 14%, respectively, while the values for those injected with 37 to 100 cells (group 3) were 45 days and 0%. The animals exposed to CDMA or FMCW had similar survival parameters, and the statistical comparison of the survival curves for each of the groups 1, 2 and 3 showed no significant differences compared to sham-exposed controls.  相似文献   

7.
To determine if radiofrequency (RF) radiation induces the formation of micronuclei, C3H 10T(1/2) cells were exposed to 835.62 MHz frequency division multiple access (FDMA) or 847.74 MHz code division multiple access (CDMA) modulated RF radiation. After the exposure to RF radiation, the micronucleus assay was performed by the cytokinesis block method using cytochalasin B treatment. The micronuclei appearing after mitosis were scored in binucleated cells using acridine orange staining. The frequency of micronuclei was scored both as the percentage of binucleated cells with micronuclei and as the number of micronuclei per 100 binucleated cells. Treatment of cells with cytochalasin B at a concentration of 2 microg/ml for 22 h was found to yield the maximum number of binucleated cells in C3H 10T(1/2) cells. The method used for the micronucleus assay in the present study detected a highly significant dose response for both indices of micronucleus production in the dose range of 0.1-1.2 Gy and it was sensitive enough to detect a significant (P > 0.05) increase in micronuclei after doses of 0.3 Gy in exponentially growing cells and after 0.9 Gy in plateau-phase cells. Exponentially growing cells or plateau-phase cells were exposed to CDMA (3.2 or 4.8 W/kg) or FDMA (3.2 or 5.1 W/kg) RF radiation for 3, 8, 16 or 24 h. In three repeat experiments, no exposure condition was found by analysis of variance to result in a significant increase relative to sham-exposed cells either in the percentage of binucleated cells with micronuclei or in the number of micronuclei per 100 binucleated cells. In this study, data from cells exposed to different RF signals at two SARs were compared to a common sham-exposed sample. We used the Dunnett's test, which is specifically designed for this purpose, and found no significant exposure-related differences for either plateau-phase cells or exponentially growing cells. Thus the results of this study are not consistent with the possibility that these RF radiations induce micronuclei.  相似文献   

8.
This study sought to clarify the effects of exposure to electromagnetic waves (EMW) used in cellular phones on learning and memory processes. Sprague-Dawley rats were exposed for either 1 h daily for 4 days or for 4 weeks to a pulsed 1439 MHz time division multiple access (TDMA) field in a carousel type exposure system. At the brain, average specific absorption rate (SAR) was 7.5 W/kg, and the whole body average SAR was 1.7 W/kg. Other subjects were exposed at the brain average SAR of 25 W/kg and the whole body average SAR of 5.7 W/kg for 45 min daily for 4 days. Learning and memory were evaluated by reversal learning in a food rewarded T-maze, in which rats learned the location of food (right or left) by using environmental cues. The animals exposed to EMW with the brain average SAR of 25 W/kg for 4 days showed statistically significant decreases in the transition in number of correct choices in the reversal task, compared to sham exposed or cage control animals. However, rats exposed to the brain average SAR of 7.5 W/kg for either 4 days or for 4 weeks showed no T-maze performance impairments. Intraperitoneal temperatures, as measured by a fiber optic thermometer, increased in the rats exposed to the brain average SAR of 25 W/kg but remained the same for the brain average SAR of 7.5 W/kg. The SAR of a standard cellular phone is restricted to a maximum of 2 W/kg averaged over 10 g tissue. These results suggest that the exposure to a TDMA field at levels about four times stronger than emitted by cellular phones does not affect the learning and memory processes when there are no thermal effects.  相似文献   

9.
Given the widespread use of the cellular phone today, investigation of potential biological effects of radiofrequency (RF) fields has become increasingly important. In particular, much research has been conducted on RF effects on brain function. To examine any biological effects on the central nervous system (CNS) induced by 1950 MHz modulation signals, which are controlled by the International Mobile Telecommunication‐2000 (IMT‐2000) cellular system, we investigated the effect of RF fields on microglial cells in the brain. We assessed functional changes in microglial cells by examining changes in immune reaction‐related molecule expression and cytokine production after exposure to a 1950 MHz Wideband Code Division Multiple Access (W‐CDMA) RF field, at specific absorption rates (SARs) of 0.2, 0.8, and 2.0 W/kg. Primary microglial cell cultures prepared from neonatal rats were subjected to an RF or sham field for 2 h. Assay samples obtained 24 and 72 h after exposure were processed in a blind manner. Results showed that the percentage of cells positive for major histocompatibility complex (MHC) class II, which is the most common marker for activated microglial cells, was similar between cells exposed to W‐CDMA radiation and sham‐exposed controls. No statistically significant differences were observed between any of the RF field exposure groups and the sham‐exposed controls in percentage of MHC class II positive cells. Further, no remarkable differences in the production of tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), and interleukin‐6 (IL‐6) were observed between the test groups exposed to W‐CDMA signal and the sham‐exposed negative controls. These findings suggest that exposure to RF fields up to 2 W/kg does not activate microglial cells in vitro. Bioelectromagnetics 31:104–112, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
In the present study, we determined whether exposure of mammalian cells to 3.2-5.1 W/kg specific absorption rate (SAR) radiofrequency fields could induce DNA damage in murine C3H 10T(1/2) fibroblasts. Cell cultures were exposed to 847.74 MHz code-division multiple access (CDMA) and 835.62 frequency-division multiple access (FDMA) modulated radiations in radial transmission line (RTL) irradiators in which the temperature was regulated to 37.0 +/- 0.3 degrees C. Using the alkaline comet assay to measure DNA damage, we found no statistically significant differences in either comet moment or comet length between sham-exposed cells and those exposed for 2, 4 or 24 h to CDMA or FDMA radiations in either exponentially growing or plateau-phase cells. Further, a 4-h incubation after the 2-h exposure resulted in no significant changes in comet moment or comet length. Our results show that exposure of cultured C3H 10T(1/2) cells at 37 degrees C CDMA or FDMA at SAR values of up to 5.1 W/kg did not induce measurable DNA damage.  相似文献   

11.
This study was designed to determine whether chronic exposure to radiofrequency (RF) radiation from cellular phones increased the incidence of spontaneous tumors in F344 rats. Eighty male and 80 female rats were randomly placed in each of three irradiation groups. The sham group received no irradiation; the Frequency Division Multiple Access (FDMA) group was exposed to 835.62 MHz FDMA RF radiation; and the Code Division Multiple Access (CDMA) group was exposed to 847.74 MHz CDMA RF radiation. Rats were irradiated 4 h per day, 5 days per week over 2 years. The nominal time-averaged specific absorption rate (SAR) in the brain for the irradiated animals was 0.85 +/- 0.34 W/kg (mean +/- SD) per time-averaged watt of antenna power. Antennas were driven with a time-averaged power of 1.50 +/- 0.25 W (range). That is, the nominal time-averaged brain SAR was 1.3 +/- 0.5 W/kg (mean +/- SD). This number was an average from several measurement locations inside the brain, and it takes into account changes in animal weight and head position during irradiation. All major organs were evaluated grossly and histologically. The number of tumors, tumor types and incidence of hyperplasia for each organ were recorded. There were no significant differences among final body weights or survival days for either males or females in any group. No significant differences were found between treated and sham-exposed animals for any tumor in any organ. We conclude that chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA RF radiation had no significant effect on the incidence of spontaneous tumors in F344 rats.  相似文献   

12.
In the present study, we have tested the beneficial effects of forskolin in protecting the mancozeb‐induced reproductive toxicity in rats. Adult male Wistar rats were exposed to either mancozeb (500 mg/kg body weight/day) or forskolin (5 mg/kg body weight/day) or both for 65 days and analyzed for spermatogenesis and steroidogenesis and testicular and epididymal oxidative toxicity. A significant decrease in daily sperm production, epididymal sperm count, motile, viable, and hypo‐osmotic swelling‐tail swelled sperm was observed in mancozeb‐treated rats. The activity levels of testicular 3β‐hydroxysteroid dehydrogenase and 17β‐hydroxysteroid dehydrogenase and circulatory testosterone levels were significantly decreased in mancozeb‐treated rats. Exposure to mancozeb resulted in a significant decrease in glutathione levels and superoxide dismutase and catalase activity levels with an increase in lipid peroxidation levels in the testes and epididymis. Coadministration of forskolin mitigated the mancozeb‐induced oxidative toxicity and suppressed steroidogenesis and spermatogenesis.  相似文献   

13.
To examine the biological effects of radio frequency (RF) electromagnetic fields in vitro, we have examined the fundamental cellular responses, such as cell growth, survival, and cell cycle distribution, following exposure to a wide range of specific absorption rates (SAR). Furthermore, we compared the effects of continuous and intermittent exposure at high SARs. An RF electromagnetic field exposure unit operating at a frequency of 2.45 GHz was used to expose cells to SARs from 0.05 to 1500 W/kg. When cells were exposed to a continuous RF field at SARs from 0.05 to 100 W/kg for 2 h, cellular growth rate, survival, and cell cycle distribution were not affected. At 200 W/kg, the cell growth rate was suppressed and cell survival decreased. When the cells were exposed to an intermittent RF field at 300 W/kg(pk), 900 W/kg(pk) and 1500 W/kg(pk) (100 W/kg(mean)), no significant differences were observed between these conditions and intermittent wave exposure at 100 W/kg. When cells were exposed to a SAR of 50 W/kg for 2 h, the temperature of the medium around cells rose to 39.1 degrees C, 100 W/kg exposure increased the temperature to 41.0 degrees C, and 200 W/kg exposure increased the temperature to 44.1 degrees C. Exposure to RF radiation results in heating of the medium, and the thermal effect depends on the mean SAR. Hence, these results suggest that the proliferation disorder is caused by the thermal effect.  相似文献   

14.
A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields induce apoptosis or other cellular stress response that activate p53 or the p53-signaling pathway. First, we evaluated the response of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and wideband code division multiple access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced apoptosis or any signs of stress. Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg, and CW radiation at 80 mW/kg for 24 or 48 h. Human IMR-90 fibroblasts from fetal lungs were exposed to both W-CDMA and CW radiation at a SAR of 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the percentage of apoptotic cells were observed between the test groups exposed to RF signals and the sham-exposed negative controls, as evaluated by the Annexin V affinity assay. No significant differences in expression levels of phosphorylated p53 at serine 15 or total p53 were observed between the test groups and the negative controls by the bead-based multiplex assay. Moreover, microarray hybridization and real-time RT-PCR analysis showed no noticeable differences in gene expression of the subsequent downstream targets of p53 signaling involved in apoptosis between the test groups and the negative controls. Our results confirm that exposure to low-level RF signals up to 800 mW/kg does not induce p53-dependent apoptosis, DNA damage, or other stress response in human cells.  相似文献   

15.
L929 murine fibroblast cells were exposed to radiofrequency (RF) radiation from a time division multiple access wireless phone operating at 835 MHz frequency to determine the effect of RF-radiation energy emitted by wireless phones on ornithine decarboxylase (ODC) activity in cultured cells. Exposure was for 8 h to an average specific absorption rate (SAR) from <1 W/kg up to 15 W/kg. After exposure, cells were harvested and ODC activity was measured. No statistically significant difference in ODC activity was found between RF-radiation-exposed and sham-exposed cells at non-thermal specific absorption rates. At SARs which resulted in measurable heating of the medium, a dose-dependent decrease in enzymatic activity was observed and was shown to be consistent with a comparable decrease caused by non-RF-radiation heating. Thus we observed only the well-known enzyme inhibition due to heating, rather than the previously reported enhancement attributed to RF-radiation exposure.  相似文献   

16.
In vitro experiments with C3H 10T(1/2) mouse cells were performed to determine whether Frequency Division Multiple Access (FDMA) or Code Division Multiple Access (CDMA) modulated radiofrequency (RF) radiations induce changes in gene expression. After the cells were exposed to either modulation for 24 h at a specific absorption rate (SAR) of 5 W/ kg, RNA was extracted from both exposed and sham-exposed cells for gene expression analysis. As a positive control, cells were exposed to 0.68 Gy of X rays and gene expression was evaluated 4 h after exposure. Gene expression was evaluated using the Affymetrix U74Av2 GeneChip to detect changes in mRNA levels. Each exposure condition was repeated three times. The GeneChip data were analyzed using a two-tailed t test, and the expected number of false positives was estimated from t tests on 20 permutations of the six sham RF-field-exposed samples. For the X-ray-treated samples, there were more than 90 probe sets with expression changes greater than 1.3-fold beyond the number of expected false positives. Approximately one-third of these genes had previously been reported in the literature as being responsive to radiation. In contrast, for both CDMA and FDMA radiation, the number of probe sets with an expression change greater than 1.3-fold was less than or equal to the expected number of false positives. Thus the 24-h exposures to FDMA or CDMA RF radiation at 5 W/kg had no statistically significant effect on gene expression.  相似文献   

17.
Radiofrequency radiation (RFR) causes heating, which can lead to detrimental biological effects. To characterize the effects of RFR exposure on body temperature in relation to animal size and pregnancy, a series of short‐term toxicity studies was conducted in a unique RFR exposure system. Young and old B6C3F1 mice and young, old, and pregnant Harlan Sprague‐Dawley rats were exposed to Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) RFR (rats = 900 MHz, mice = 1,900 MHz) at specific absorption rates (SARs) up to 12 W/kg for approximately 9 h a day for 5 days. In general, fewer and less severe increases in body temperature were observed in young than in older rats. SAR‐dependent increases in subcutaneous body temperatures were observed at exposures ≥6 W/kg in both modulations. Exposures of ≥10 W/kg GSM or CDMA RFR induced excessive increases in body temperature, leading to mortality. There was also a significant increase in the number of resorptions in pregnant rats at 12 W/kg GSM RFR. In mice, only sporadic increases in body temperature were observed regardless of sex or age when exposed to GSM or CDMA RFR up to 12 W/kg. These results identified SARs at which measurable RFR‐mediated thermal effects occur, and were used in the selection of exposures for subsequent toxicology and carcinogenicity studies. Bioelectromagnetics. 39:190–199, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

18.
Human glioma MO54 cells were used to investigate whether radio frequency (RF) field exposure could activate stress response genes. Cells were exposed to continuous wave 1950 MHz or sham conditions for up to 2 h. Specific absorption rates (SARs) were 1, 2, and 10 W/kg. For the cell growth experiment, cell numbers were counted at 0-4 days after exposure. Expression of Hsp27 and Hsp70, as well as the level of phosphorylated Hsp27 (78Ser) protein, was determined by Western blotting. It was found that sham exposed and RF exposed cells demonstrated a similar growth pattern up to 4 days after RF field exposure. RF field exposure at both 2 and 10 W/kg did not affect the growth of MO54 cells. In addition, there were no significant differences in protein expression of Hsp27 and Hsp70 between sham exposed and RF exposed cells at a SAR of 1, 2, or 10 W/kg for 1 and 2 h. However, exposure to RF field at a SAR of 10 W/kg for 1 and 2 h decreased the protein level of phosphorylated Hsp27 (78Ser) significantly. Our results suggest that although exposure to a 1950 MHz RF field has no effect on cell proliferation and expression of Hsp 27 and Hsp70, it may inhibit the phosphorylation of Hsp27 at Serine 78 in MO54 cells.  相似文献   

19.
Despite much research, gaps remain in knowledge about the potential health effects of exposure to radiofrequency (RF) fields. This study investigated the effects of early‐life exposure to pulsed long term evolution (LTE) 1,846 MHz downlink signals on innate mouse behavior. Animals were exposed for 30 min/day, 5 days/week at a whole‐body average specific energy absorption rate (SAR) of 0.5 or 1 W/kg from late pregnancy (gestation day 13.5) to weaning (postnatal day 21). A behavioral tracking system measured locomotor, drinking, and feeding behavior in the home cage from 12 to 28 weeks of age. The exposure caused significant effects on both appetitive behaviors and activity of offspring that depended on the SAR. Compared with sham‐exposed controls, exposure at 0.5 W/kg significantly decreased drinking frequency (P ≤ 0.000) and significantly decreased distance moved (P ≤ 0.001). In contrast, exposure at 1 W/kg significantly increased drinking frequency (P ≤ 0.001) and significantly increased moving duration (P ≤ 0.005). In the absence of other plausible explanations, it is concluded that repeated exposure to low‐level RF fields in early life may have a persistent and long‐term effect on adult behavior. Bioelectromagnetics. 2019;40:498–511. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

20.
In an 18-month carcinogenicity study, Pim1 transgenic mice were exposed to pulsed 900 MHz (pulse width: 0.577 ms; pulse repetition rate: 217 Hz) radiofrequency (RF) radiation at a whole-body specific absorption rate (SAR) of 0.5, 1.4 or 4.0 W/kg [uncertainty (k = 2): 2.6 dB; lifetime variation (k = 1): 1.2 dB]. A total of 500 mice, 50 per sex per group, were exposed, sham-exposed or used as cage controls. The experiment was an extension of a previously published study in female Pim1 transgenic mice conducted by Repacholi et al. (Radiat. Res. 147, 631-640, 1997) that reported a significant increase in lymphomas after exposure to the same 900 MHz RF signal. Animals were exposed for 1 h/day, 7 days/week in plastic tubes similar to those used in inhalation studies to obtain well-defined uniform exposure. The study was conducted blind. The highest exposure level (4 W/kg) used in this study resulted in organ-averaged SARs that are above the peak spatial SAR limits allowed by the ICNIRP (International Commission on Non-ionizing Radiation Protection) standard for environmental exposures. The whole-body average was about three times greater than the highest average SAR reported in the earlier study by Repacholi et al. The results of this study do not suggest any effect of 217 Hz-pulsed RF-radiation exposure (pulse width: 0.577 ms) on the incidence of tumors at any site, and thus the findings of Repacholi et al. were not confirmed. Overall, the study shows no effect of RF radiation under the conditions used on the incidence of any neoplastic or non-neoplastic lesion, and thus the study does not provide evidence that RF radiation possesses carcinogenic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号