首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
In zebra finches (Taeniopygia guttata), estradiol contributes to sexual differentiation of the song system but the receptor(s) underlying its action are not exactly known. Whereas mRNA and/or protein for nuclear estrogen receptors ERα and ERβ are minimally expressed, G‐protein coupled estrogen receptor 1 (GPER1) has a much greater distribution within neural song regions and the syrinx. At present, however, it is unclear if this receptor contributes to dimorphic development of the song system. To test this, the specific GPER1 antagonist, G‐15, was intracranially administered to zebra finches for 25 days beginning on the day of hatching. In males, G‐15 significantly decreased nuclear volumes of HVC and Area X. It also decreased the muscle fiber sizes of ventralis and dorsalis in the syrinx. In females, G‐15 had no effect on measures within the brain, but did increase fiber sizes of both muscle groups. In sum, these data suggest that GPER1 can have selective and opposing influences on dimorphisms within the song system, but since not all features were affected additional factors are likely involved. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   

3.
Songbirds have a specialized steroid‐sensitive network of brain nuclei, the song system, for controlling song. Most nuclei of the song system express androgen receptors, and the sensory‐motor integration nucleus High Vocal Center (HVC) alone also expresses estrogen receptors. Apart from expressing estrogen receptors in the vocal control system, songbirds are unique among birds because they have high concentrations of the estrogen‐synthesizing enzyme aromatase in the neostriatum surrounding HVC. However, the role of estrogen in controlling the development of the song structure has been scarcely investigated. In this work, we show that blocking the production of estrogen during testosterone‐induced song motor development in adult female canaries alters the song pattern compared to control females treated with testosterone only. These effects were correlated with inhibition of the expression of estrogen‐sensitive genes, such as brain‐derived nerve growth factor, in HVC. The expression of the ATP‐synthase gene, an indicator of cell activity, in HVC, and the size of HVC, were not affected by the treatment. Our results provide the first example of estrogen‐sensitive mechanisms controlling the structural features of adult birdsong. © 2002 Wiley Periodicals, Inc. J Neurobiol 54: 370–379, 2003  相似文献   

4.
Only male zebra finches (Poephila guttata) sing, and nuclei implicated in song behavior exhibit marked sex differences in neuron number. In the robust nucleus of the anterior neostriatum (RA), these sex differences develop because more neurons die in young females than in males. However, it is not known whether the sexually dimorphic survival of RA neurons is a primary event in sexual differentiation or a secondary response to sex differences in the number of cells interacting trophically with RA neurons. In particular, since sexual differentiation of the RA parallels the development of dimorphisms in the numbers of neurons providing afferent input from the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and the high vocal center (HVC), it has been hypothesized that sex differences in the size of these afferent populations trigger differential RA neuron survival and growth. To test this hypothesis, we lesioned either the lMAN or both the lMAN and HVC unilaterally in 12-day-old male and female zebra finches. Subsequently, RA cell death and RA neuron number and size were measured. Unilateral lMAN lesions increased cell death and decreased neuron number and size within the ipsilateral RA of both sexes. However, even in the lMAN-lesioned hemisphere, these effects were less pronounced in males than in females, so that by day 25 the volume, number, and size of neurons were sexually dimorphic in both the contralateral and ipsilateral RA. Similarly, the absence of both lMAN and HVC afferents did not prevent the emergence of sex differences in the number and size of RA neurons by 25 day posthatching. We conclude that these sex differences within the RA are not a secondary response to dimorphisms in the numbers of lMAN or HVC neurons providing afferent input. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Bengalese finches, Lonchura striata, are extremely sexually dimorphic in their singing behavior; males sing complex songs, whereas females do not sing at all. This study describes the developmental differentiation of the brain song system in Bengalese finches. Nissl staining was used to measure the volumes of four telencephalic song nuclei: Area X, HVC, the robust nucleus of the arcopallium (RA), and the lateral portion of the magnocellular nucleus of the anterior nidopallium (LMAN). In juveniles (circa 35 days old), Area X and the HVC were well developed in males, while they were absent or not discernable in females. The RA was much larger in males but barely discernable in females. In males, the volumes of Area X and the RA increased further into adulthood, but that of the HVC remained unchanged. The LMAN volume was greater in juveniles than in adults, and there was no difference in the LMAN volume between the sexes. The overall tendency was similar to that described in zebra finches, except for the volume of the RA, where the degree of sexual dimorphism is larger and the timing of differentiation occurs earlier in Bengalese finches. Motor learning of the song continues until day 90 in zebra finches, but up to day 120 in Bengalese finches. Earlier neural differentiation and a longer learning period in Bengalese finches compared with zebra finches may be related to the more elaborate song structures of Bengalese finches.  相似文献   

6.
Birdsongs and the regions of their brain that control song exhibit obvious sexual differences. However, the mechanisms underlying these sexual dimorphisms remain unknown. To address this issue, we first examined apoptotic cells labeled with caspase-3 or TUNEL in Bengalese finch song control nuclei - the robust nucleus of the archopallium (RA), the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the high vocal center (HVC) and Area X from post-hatch day (P) 15 to 120. Next, we investigated the expression dynamics of pro-apoptotic (Bid, Bad and Bax) and anti-apoptotic (Bcl-2 and Bcl-xL) genes in the aforementioned nuclei. Our results revealed that the female RA at P45 exhibited marked cell apoptosis, confirmed by low densities of Bcl-xL and Bcl-2. Both the male and female LMAN exhibited apoptotic peaks at P35 and P45, respectively, and the observed cell loss was more extensive in males. A corresponding sharp decrease in the density of Bcl-2 after P35 was observed in both sexes, and a greater density of Bid was noted at P45 in males. In addition, we observed that RA volume and the total number of BDNF-expressing cells decreased significantly after unilateral lesion of the LMAN or HVC (two areas that innervate the RA) and that greater numbers of RA-projecting cells were immunoreactive for BDNF in the LMAN than in the HVC. We reasoned that a decrease in the amount of BDNF transported via HVC afferent fibers might result in an increase in cell apoptosis in the female RA. Our data indicate that cell apoptosis resulting from different pro- and anti-apoptotic agents is involved in generating the differences between male and female song control nuclei.  相似文献   

7.
Like many other songbird species, male zebra finches learn their song from a tutor early in life. Song learning in birds has strong parallels with speech acquisition in human infants at both the behavioral and neural levels. Forebrain nuclei in the 'song system' are important for the sensorimotor acquisition and production of song, while caudomedial pallial brain regions outside the song system are thought to contain the neural substrate of tutor song memory. Here, we exposed three groups of adult zebra finch males to either tutor song, to their own song, or to novel conspecific song. Expression of the immediate early gene protein product Zenk was measured in the song system nuclei HVC, robust nucleus of the arcopallium (RA) and Area X. There were no significant differences in overall Zenk expression between the three groups. However, Zenk expression in the HVC was significantly positively correlated with the strength of song learning only in the group that was exposed to the bird's own song, not in the other two groups. These results suggest that the song system nucleus HVC may contain a neural representation of a memory of the bird's own song. Such a representation may be formed during juvenile song learning and guide the bird's vocal output.  相似文献   

8.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei.  相似文献   

9.
Male zebra finches sing and females normally do not. This sexually dimorphic behavior is mediated by a sexually dimorphic series of interconnected nuclei that are larger and more developed in males. Estradiol administered to females as early as the day of hatching (P1) causes profound masculinization of this song system. The exact timing of estrogen action is unknown, and there is little information concerning the times and sites of expression of estrogen receptors and aromatase before P5. We measured the expression of mRNAs encoding these proteins in brain during late embryogenesis and on P1 to determine if estrogen synthesis or receptor-mediated actions on the song system, as part of the program of sexual differentiation, might be possible during this period. Using highly sensitive and specific in situ hybridization procedures for mRNAs encoding ERalpha, ERbeta, and aromatase, we detected mRNA for ERs in archistriatal regions as early as embryonic stage 34, and in diencephalic regions as early as embryonic stage 30. ERalpha mRNA was also detected in the dorsal mesencephalon at P1. Aromatase mRNA expression was present as early as embryonic stage 30 in diencephalic and mesencephalic regions. No obvious sex differences in the spatio-temporal pattern of mRNA expression were detected. Our results suggest that estrogen can influence cell growth and differentiation in zebra finch brain well before hatching and into posthatching life. The results fail to provide support for the hypothesis that sexual differentiation of the song system is mediated by sex differences in the expression of these mRNAs at these ages.  相似文献   

10.
Songbirds have a specialized steroid-sensitive network of brain nuclei, the song system, for controlling song. Most nuclei of the song system express androgen receptors, and the sensory-motor integration nucleus High Vocal Center (HVC) alone also expresses estrogen receptors. Apart from expressing estrogen receptors in the vocal control system, songbirds are unique among birds because they have high concentrations of the estrogen-synthesizing enzyme aromatase in the neostriatum surrounding HVC. However, the role of estrogen in controlling the development of the song structure has been scarcely investigated. In this work, we show that blocking the production of estrogen during testosterone-induced song motor development in adult female canaries alters the song pattern compared to control females treated with testosterone only. These effects were correlated with inhibition of the expression of estrogen-sensitive genes, such as brain-derived nerve growth factor, in HVC. The expression of the ATP-synthase gene, an indicator of cell activity, in HVC, and the size of HVC, were not affected by the treatment. Our results provide the first example of estrogen-sensitive mechanisms controlling the structural features of adult birdsong.  相似文献   

11.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
The song system of zebra finches is sexually dimorphic: the volumes of the song control nuclei and the neurons within these nuclei are larger in males. The song system of hatching female zebra finches is masculinized by systemic treatment with estrogen. We investigated the locus of this estrogen action by using microimplants of estradiol benzoate (EB). We implanted female zebra finch nestlings 10–13 days old with Silastic pellets containing approximately 2 μg EB at one of several sites: near the higher vocal center (HVC), in the brain distant from HVC, or in the periphery either under the skin of the breast or in the peritoneal cavity. Controls were either unimplanted or implanted near HVC with Silastic pellets without hormone. The brains were fixed by perfusion at 60 days, and the volumes of the song control regions as well as the sizes of individual neurons were measured. Neurons in HVC were lerger (more masculine) in the HVC-implanted group than in other groups, which did not differ among themselves. The size of neurons in the robust nucleus of the archistriatum (RA) and the lateral magnocellular nucleus ofthe neostriatum (lMAN) were inversely correlated with the distance of the EB pellet to HVC; neurons in RA and lMAN were larger when the EB pellets were closer to HVC. This result suggests that implants near HVC were at or near a site of estrogen action. To our knowledge, this is the first demonstration that localized brain implants of estrogen cause morphological masculinization in any species. 1994 John Wiley & Sons, Inc.  相似文献   

13.
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post‐hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1315–1338, 2015  相似文献   

14.
Avian song is a sexually dimorphic behavior which is regulated seasonally. This regulation involves the construction and growth of song control structures: the high vocal center (HVC),nucleus robustus archistrialis(RA),nucleus magnocellularis anterior(MAN), and Area X. Song behavior and its neural correlates are controlled by steroid-dependent and independent processes. The avian circadian system is known to be involved in both daily processes and seasonal reproduction. A major part of this system is the circadian secretion of melatonin by the pineal gland. To determine possible interactions of the circadian and song control systems, the distribution and density of 2-[125I]iodomelatonin (IMEL) binding, an indicator of melatonin sensitivity, were determined in male and female house sparrow brains. Specific binding was found in visual system centers of both genders, but binding in HVC, RA, and Area X was present only in males. Binding in MAN was present in both sexes. Although the effects of short and long photoperiods on male house sparrow IMEL binding in song structures revealed no systematic changes, there were significant differences in binding under different photoperiods in HVC and RA. IMEL binding in the tectofugalnucleus rotundus,however, was consistently highest under short day conditions. IMEL binding in song control nuclei was independent of testicular influence, since castration did not affect it significantly. The data point to a role for the circadian system of house sparrows in song control, but a specific role for melatonin in the daily or seasonal regulation of the song control system in birds, could not be determined.  相似文献   

15.
Using in situ hybridization to detect the expression of the retinoic acid synthesizing enzyme (retinaldehyde dehydrogenase: zRalDH) mRNA, we mapped the distribution of its expression in adult zebra finch brain. In the neural song circuit, strong expression was found in high vocal center (HVC), para-HVC, and at a very low level in the robust nucleus of the arcopallium (RA). The expression in HVC and RA was found in both males and females. Outside of the song system, major areas of expression were in medial nidopallium (N), hyperpallium apicale (HA), mesopallium ventrale (MV), taenial amygdala (TnA), cerebellar Purkinje cells, and nucleus isthmo-opticus (IO). In nestlings, we found zRalDH mRNA expression in HVC and RA as early as posthatch day 4 or 5 (P4-5), although the expression varied among individuals. Thus, retinoic acid synthesis in HVC and RA could participate in song system formation and development. However, we found no sex difference in volume or intensity of zRalDH and androgen receptor (AR) expression in HVC and RA at P11 prior to the development of significant size dimorphisms in these nuclei. The size of HVC in females at P11 defined by zRalDH expression was greater than that in adult females, suggesting that HVC might experience net cell loss between P11 and adulthood.  相似文献   

16.
白腰文鸟发声行为的神经发育   总被引:5,自引:0,他引:5  
本文研究了 5~ 15 0日龄雄性白腰文鸟 (Lonchurastriataswinhoei)不同年龄段的声谱变化以及这种变化的神经调制机制。结果如下 :(1)HVC、RA和AreaX三个发声核团的神经联系基本接近成年鸟的水平后 ,幼鸟才开始学习鸣叫 (约 45日龄 ) ;(2 )HVC、RA和AreaX达到成年核团体积时 (约 80日龄 ) ,幼鸟才具有成年雄鸟的鸣叫模式 ;(3)发声控制核团的发育与核团间的神经支配有关 ,而基本不受鸣唱行为的影响 ,HVC、RA和AreaX的最快增长时间段各不相同 ,三个核团随年龄增长而呈现体积增长的显著变化 (one wayANOVA ,P <0 0 5 ) ,但各核团在任意两个时间段的体积差异并不都显著。结果提示 :发声行为产生的时间和发展与发声控制核团的发育、核团间的神经联系有关 ,最终的体积发育程度受内在遗传力的作用 ,同时可能还受神经核团建立正常神经联系时间的影响  相似文献   

17.
Songbirds sing complex songs as a result of evolution through sexual selection. The evolution of such sexually selected traits requires genetic control, as well as selection on their expression. Song is controlled by a discrete neural pathway in the brain, and song complexity has been shown to correlate with the volume of specific song control nuclei. As such, the development of these nuclei, in particular the high vocal centre (HVC), is thought to be the mechanism controlling signal expression indicating male quality. We tested the hypothesis that early developmental stress selectively affects adult HVC size, compared with other brain nuclei. We did this by raising cross-fostered zebra finches (Taeniopygia guttata) under stressed and controlled conditions and determining the effect on adult HVC size. Our results confirm the strong influence of environmental conditions, particularly on HVC development, and therefore on the expression of complex songs. The results also show that both environmental and genetic factors affect the development of several brain nuclei, highlighting the developmental plasticity of the songbird brain. In all, these results explain how the complex song repertoires of songbirds can evolve as honest indicators of male quality.  相似文献   

18.
Only male zebra finches sing, and several brain regions implicated in song behavior exhibit marked sex differences in neuron number. In one region, the high vocal center (HVC), this dimorphism develops because the incorporation of new neurons is greater in males than in females during the first several weeks after hatching. Although estrogen (E2) exposure stimulates neuron addition in females, it is not known where (E2) acts, or to what extent sexual differentiation influences the production, specification, or survival of HVC neurons. In the present study we first reassessed sex and (E2)-induced differences in cell degeneration within the HVC using the TUNEL technique to identify cells undergoing DNA fragmentation indicative of apoptosis. HVC neuron number, as well as the density and number of TUNEL-labeled and pyknotic cells within the HVC were measured in normal 20- and 30-day-old males and females, and in 30-day-old females implanted with E2 on posthatch day 18. Although HVC neuron number was greater in males than in females, and was masculinized in E2 females, no group differences were evident in the absolute number of dying cells. These results indicate that sex differences in cell survival within the HVC do not entirely account for sexually dimorphic neuron addition to this region. Rather, sexual differentiation acts on some HVC neurons before they complete their migration and/or early differentiation. Although the migratory route of HVC neurons is not known, a large number of E2 receptor-containing cells (ER cells) reside just ventromedial to the HVC and adjacent to the proliferative ventricular zone. Next, we investigated whether these ER cells contribute to early-arising sex differences in HVC neuron addition. By combining [3H] thymidine autoradiography with immunocytochemistry for ERs, we first established that ER-expressing cells are not generated during posthatch sexually dimorphic HVC neuron addition, and thus are not young HVC neurons that transiently express ERs during their migration. Furthermore, in 25-day-old birds we found no sex difference in the density of pyknotic cells among this group of ER cells, suggesting that these cells do not promote the differential survival of HVC neuronal precursors migrating through this region. Rather, ER cells or other cell populations may establish sex differences in HVC neuron number by creating dimorphisms in cellular specification. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 61–71, 1997  相似文献   

19.
20.
Mechanisms regulating masculinization of the zebra finch song system are unclear; both estradiol and sex‐specific genes may be important. This study was designed to investigate relationships between estrogen and ribosomal proteins (RPL17 and RPL37; sex‐linked genes) that exhibit greater expression in song control nuclei in juvenile males than females. Four studies on zebra finches were conducted using bromodeoxyuridine (BrdU) injections on posthatching days 6–10 with immunohistochemistry for the ribosomal proteins and the neuronal marker HuC/D at day 25. Volumes of brain regions were also assessed in Nissl‐stained tissue. Most BrdU+ cells expressed RPL17 and RPL37. The density and percentage of cells co‐expressing BrdU and HuC/D was greatest in Area X. The density of BrdU+ cells in Area X (or its equivalent) and the percentage of these cells that were neurons were greater in males than females. In RA and HVC, total BrdU+ cells were increased in males. A variety of effects of estradiol were also detected, including inducing an Area X in females with a masculine total number of BrdU+ cells, and increasing the volume and percentage of new neurons in the HVC of females. The same manipulation in males decreased the density of BrdU+ cells in Area X, total number of BrdU+ cells in RA, and density of new neurons in HVC and RA. These data are consistent with the idea that RPL17, RPL37, and estradiol might all influence sexual differentiation, perhaps with the hormone and proteins interacting, such that an appropriate balance is required for normal development. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号