首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 757 毫秒
1.
AIMS: To establish the specific DNA patterns in 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) regions from different kinds of Serratia marcescens strains using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequences analysis. METHODS AND RESULTS: Two pairs of primers based on the 16S rDNA and 16S-23S rDNA IGS were applied to amplify the rrn operons of two kinds of S. marcescens strains. About 1500 bp for 16S rDNA and four fragments of different sizes for 16S-23S rDNA IGS were obtained. PCR-amplified fragments were analysed by RFLP and sequence analysis. Two distinct restriction patterns revealing three to five bands between two kinds of strains were detected with each specific enzyme. According to the sequence analysis, two kinds of strains showed approximately 97% sequence homology of 16S rDNA. However, there was much difference in the sequences of IGS between the two kinds of strains. Intercistronic tRNA of strains H3010 and A3 demonstrated an order of tRNA of 5'-16S-tRNA(Ala)-tRNA(Ile)-23S-3', but strain B17 harboured the tRNA of 5'-16S-tRNA(Glu)-tRNA(Ile)-23S-3'. CONCLUSIONS: The method was specific, sensitive and accurate, providing a new technique for differentiating different strains from the same species. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper provided the first molecular characterization of 16S rDNA and 16S-23S rDNA IGS from S. marcescens strains.  相似文献   

2.
AIMS: To clone and sequence the 16S-23S ribosomal DNA (rDNA) internal spacer region (ISR) from Micrococcus luteus. METHODS AND RESULTS: The primer pair for 16S-23S rDNA ISR amplified a fragment of about 850 bp in length for two strains, JCM3347 and JCM3348 and a fragment of about 790 bp for a strain, ATCC9341. After sequencing the ISRs were identified by the comparison of the ISRs and the flanking regions of ISR. CONCLUSIONS: Although the sequence difference of the ISR occurred at only one position between the two JCM strains, the highly variable length (440 and 370 bp) and sequence similarity (about 40%) were demonstrated between the ISRs of the two JCM strains and a ATCC strain. SIGNIFICANCE AND IMPACT OF THE STUDY: A CCTCCT sequence was first detected at the 3'-end of the 16S rDNA of the three strains. Moreover, highly similar sequence to the 21-bp region containing a putative rRNA processing site was observed in the ISR of the three strains. Interestingly, no intercistronic tRNAs were demonstrated in the ISRs from the three strains.  相似文献   

3.
AIMS: To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. METHODS AND RESULTS: The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. CONCLUSIONS: There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.  相似文献   

4.
Following PCR amplification and sequencing, nucleotide sequence alignment analyses demonstrated the presence of two kinds of 16S-23S rDNA internal spacer regions (ISRs), namely, long length ISRs of 837-844 base pair (bp) [n = six for urease-negative (UN) Campylobacter lari isolates, UN C. lari JCM2530(T), RM2100, 176, 293, 299 and 448] and short length ISRs of 679-725 bp [n = six for UN C. lari: n = 14 for urease-positive thermophilic Campylobacter (UPTC) isolates]. The analyses also indicated that the short length ISRs mainly lacked the 156 bp sequence from the nucleotide positions 122-277 bp in long length ISRs for UN C. lari JCM2530(T). The 156 bp sequences shared 94.9-96.8 % sequence similarity among six isolates. Surprisingly, atypical tRNA(Ala) gene segment (5' end 35 bp), which was extremely truncated, occurred within the 156 bp sequences in the long length ISRs, as an unexpected tRNA(Ala) pseudogene. An order of the intercistronic tRNA genes within the short nucleotide spacer of 5'-16S rDNA-tRNA(Ala)-tRNA(Ile)-23S rDNA-3' occurred in all the C. lari isolates examined.  相似文献   

5.
The intergenic spacer region (ISR) between the 16S and 23S rRNA genes was tested as a tool for differentiating lactococci commonly isolated in a dairy environment. 17 reference strains, representing 11 different species belonging to the genera Lactococcus, Streptococcus, Lactobacillus, Enterococcus and Leuconostoc, and 127 wild streptococcal strains isolated during the whole fermentation process of "Fior di Latte" cheese were analyzed. After 16S-23S rDNA ISR amplification by PCR, species or genus-specific patterns were obtained for most of the reference strains tested. Moreover, results obtained after nucleotide analysis show that the 16S-23S rDNA ISR sequences vary greatly, in size and sequence, among Lactococcus garvieae, Lactococcus raffinolactis, Lactococcus lactis as well as other streptococci from dairy environments. Because of the high degree of inter-specific polymorphism observed, 16S-23S rDNA ISR can be considered a good potential target for selecting species-specific molecular assays, such as PCR primer or probes, for a rapid and extremely reliable differentiation of dairy lactococcal isolates.  相似文献   

6.
We analyzed polymorphism of the PCR-amplified 16S-23S rDNA spacer of Aeromonas species. A total of 69 isolates representing 18 DNA hybridization groups were used in this study. The analysis of PCR products of 16S-23S rDNA spacers revealed patterns consisting of two to eight DNA fragments. The fragment sizes ranged from 730 to 1050 bp. DNA patterns revealed a considerable genetic diversity between species and within a species. When a procedure to eliminate heteroduplex formation was performed, the number of bands was reduced to 2-5. Nevertheless the homoduplex ISR (intergenic spacer region) patterns obtained were not useful for species distinguishing.  相似文献   

7.
A plasmid-based 16S-23S rDNA intergenic spacer region (ISR) array was developed and optimized for analysis of microbial diversity within complex environmental samples. Plasmid probes with 16S-23S rDNA ISR inserts (800-1500 bp) from industrial wastewater treatment plant (WWTP) microorganisms were arrayed onto glass slides. Hybridization of fluorescently labeled target sequences from two clones from the ISR WWTP library to arrayed probes showed that there was a good linear relationship between hybridization intensity and ISR similarity (r(2)=0.82). Hybridization was highly specific (average background from arrayed probes with less than 80% similarity in ISR sequence was less than 7%). Strong fluorescence intensity corresponded to near-perfect match clones (99% or greater similarity in ISR sequence). A majority of probes (79%) showed no background hybridization. However, weak background (less than 50% for arrayed probes with 90% and 95% similarity in the 16S rRNA genes) was observed from closely related microorganisms. Background fluorescence from the negative control (plasmid vector with no insert) was similar to water and dimethyl sulfoxide (DMSO)-negative controls. Hybridization using fluorescently labeled ISR sequences from a mixed community sample produced strong fluorescent signals with no background from negative controls. A Cy5-labeled reference standard, part of the vector and present in every spotted probe, was used to normalize hybridization values. These results indicate that arrayed plasmid containing ISR probe insert sequences provides specificity and sensitivity for microbial community analysis in a high-throughput array format.  相似文献   

8.
The diversity of 16S-23S rDNA intergenic spacer regions (ISR) among cellulolytic myxobacterial strains was assayed. Agarose gel electrophoresis of PCR amplification products from ten strains shows that there are at least four copies of rRNA operons in the genus Sorangium, based on their size and restriction enzymatic digest maps. There are two sequence organization patterns: tRNA(Ile)-tRNA(Ala)-containing ISR and tRNA-lacking ISR. The tRNA-containing ISRs are highly similar among strains and within a strain (more than 98% similarity) and contain the essential functional regions, such as a ribonuclease III recognition site and an antiterminator recognition site boxA. The tRNA-lacking ISR has no such functional sites that are important for yielding mature rRNA, which suggests that this type of rRNA operons might be degenerate. The tRNA-lacking ISR is divided into two types based on their sizes and sequences, which exhibits about 90% similarity within each type. Thus, the tRNA-lacking ISR polymorphisms can be used to discriminate among different strains of sorangial species.  相似文献   

9.
Recently, anaerobic ammonium-oxidizing bacteria (AAOB) were identified by comparative 16S rDNA sequence analysis as a novel, deep-branching lineage within the Planctomycetales . This lineage consists currently of only two, not yet culturable bacteria which have been provisionally described as Candidatus 'Brocadia anammoxidans' and Candidatus 'Kuenenia stuttgartiensis'. In this study, a large fragment of the rDNA operon, including the 16S rDNA, the intergenic spacer region (ISR) and approximately 2 000 bases of the 23S rDNA, was polymerase chain reaction (PCR) amplified, cloned and sequenced from both AAOB. The retrieved 16S rDNA sequences of both species contain an insertion at helix 9 with a previously overlooked pronounced secondary structure (new subhelices 9a and 9b). This insertion, which is absent in all other known prokaryotes, is detectable by fluorescence in situ hybridization (FISH) and thus present in the mature 16S rRNA. In contrast with the genera Pirellula , Planctomyces and Gemmata that possess unlinked 16S and 23S rRNA genes, both AAOB have the respective genes linked together by an ISR of approximately 450 bp in length. Phylogenetic analysis of the obtained 23S rRNA-genes confirmed the deep branching of the AAOB within the Planctomycetales and allowed the design of additional specific FISH probes. Remarkably, the ISR of the AAOB also could be successfully detected by FISH via simultaneous application of four monolabelled oligonucleotide probes. Quantitative FISH experiments with cells of Candidatus 'Brocadia anammoxidans' that were inhibited by exposure to oxygen for different time periods demonstrated that the concentration of transcribed ISR reflected the activity of the cells more accurately than the 16S or 23S rRNA concentration. Thus the developed ISR probes might become useful tools for in situ monitoring of the activity of AAOB in their natural environment.  相似文献   

10.
Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions.  相似文献   

11.
Long PCR was used to amplify a 5-kb fragment of the bacterial ribosomal operon (16S-intergenic spacer region (ISR)-23S) from several Ralstonia eutropha strains (16S rDNA sequence similarity: 97-99%). Due to the large product size, amplicons from the different strains could be distinguished using restriction enzyme fragment length polymorphisms (RFLP) and repetitive PCR analysis (Rep-PCR) with the primer 1492r. These methods may prove useful in differentiating other bacterial strains with highly similar 16S rDNA sequences.  相似文献   

12.
PCR-ribotyping, a typing method based on size variation in 16S-23S rRNA intergenic spacer region (ISR), has been used widely for molecular epidemiological investigations of C. difficile infections. In the present study, we describe the sequence diversity of ISRs from 43 C. difficile strains, representing different PCR-ribotypes and suggest homologous recombination as a possible mechanism driving the evolution of 16S-23S rRNA ISRs. ISRs of 45 different lengths (ranging from 185 bp to 564 bp) were found among 458 ISRs. All ISRs could be described with one of the 22 different structural groups defined by the presence or absence of different sequence modules; tRNAAla genes and different combinations of spacers of different lengths (33 bp, 53 bp or 20 bp) and 9 bp direct repeats separating the spacers. The ISR structural group, in most cases, coincided with the sequence length. ISRs that were of the same lengths had also very similar nucleotide sequence, suggesting that ISRs were not suitable for discriminating between different strains based only on the ISR sequence. Despite large variations in the length, the alignment of ISR sequences, based on the primary sequence and secondary structure information, revealed many conserved regions which were mainly involved in maturation of pre-rRNA. Phylogenetic analysis of the ISR alignment yielded strong evidence for intra- and inter-homologous recombination which could be one of the mechanisms driving the evolution of C. difficile 16S-23S ISRs. The modular structure of the ISR, the high sequence similarities of ISRs of the same sizes and the presence of homologous recombination also suggest that different copies of C. difficile 16S-23S rRNA ISR are evolving in concert.  相似文献   

13.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNA(Ala) and tRNA(Ile), which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

14.
本研究采用PCR及序列测定的方法,对我国淡水铜绿微囊藻有毒株(M8641)和另一低毒的种类惠氏微囊藻(M574)rDNA16S-23S基因间隔区进行了序列的测定和分析,结果表明:rDNA16S-23S基因间隔区可以作为一个精细且稳定的指标,用于微囊藻的分类和鉴定。并从分子水平提出了铜绿微囊藻与惠氏微囊藻在种系发生上有较近缘的关系。本文首次对微囊藻属Microcystis rDNA基因间隔区全序列作了报道,为微囊藻属的鉴定及系统学研究提供了分子基础。    相似文献   

15.
16.
根据细菌的16SrDNA3’端和23SrDNA5’端的高度保守区设计引物,PCR扩增了2株创伤弧菌(Vibrio vulnificus)的16S-23SrDNA间区(Intergenic spacer,IGS),克隆到pGEM-T载体上,测序。用BLAST和DNA star软件对16S-23SrDNA间区序列及其内的tRNA基因进行比较分析。结果表明,2株创伤弧菌共测出9条16S-23SrDNA间区序列,其中ZSU006测出5条,间区类型分别为:IGS^GLAV、IGS^GLV、IGS^LA、IGS^A和IGS^G.其中IGS^GLAv最大,包含tRNA^Glu、tRNA^Lys、tRNA^Ala。和tRNA^Val基因;IGS^GLV包含tRNA^Glu、tRNA^Lys。和tRNA^Val基因;IGS^LA,则包含tRNA^Ile和tRNA^Ala基因;IGS^G包含tRNA^Glu基因;而IGS^A仅包含tRNA^Ala基因。菌株CG021测出的16S-23SrDNA IGS序列有4条,除缺少IGS^A外,其余的IGS类型均与ZSU006的相同。与GenBank内的创伤弧菌ATCC27562的IGS序列比较,发现创伤弧菌所有类型的IGS的tRNA基因两端的非编码区具有较高的种内同源性。16S-23SrDNA间区结构的差异为建立一种新的创伤弧菌检测方法奠定了基础。  相似文献   

17.
AIMS: To assess the efficacy of numerical analysis of PFGE-DNA profiles for identification and differentiation of Campylobacter fetus subspecies. METHODS AND RESULTS: 31 Camp. fetus strains were examined by phenotypic, PCR- and PFGE-based methods, and the 16S rDNA sequences of 18 strains compared. Numerical analysis of PFGE-DNA profiles divided strains into two clusters at the 86% similarity level. One cluster contained 19 strains clearly identified as Camp. fetus subsp. venerealis. The other cluster comprised 12 strains, of which 10 were unambiguously identified as Camp. fetus subsp. fetus. The remaining two strains were identified as Camp. fetus subsp. venerealis by either phenotypic or PCR methods, but not both. At higher similarity levels, clusters containing isolates from each of two countries were identified, suggesting that certain clones predominate in certain geographical regions. CONCLUSION: Numerical analysis of PFGE-DNA profiles is an effective method for differentiating Camp. fetus subspecies. SIGNIFICANCE AND IMPACT OF THE STUDY: Critical comparison of PFGE, PCR, 16S rDNA sequencing and phenotypic methods for differentiation of Camp. fetus subspecies was attained. Novel phenotypic markers for distinguishing subspecies were identified. Evidence for dominant clones of each subspecies in certain countries was provided.  相似文献   

18.
19.
AIMS: The organization of ribosomal RNA (rrn) operons in Lactobacillus sanfranciscensis was studied in order to establish an easy-to-perform method for identification of L. sanfranciscensis strains, based on the length and sequence polymorphism of the 16S-23S rDNA intergenic spacer region (ISR). METHODS AND RESULTS: PCR amplification of the 16S-23S rDNA ISRs of L. sanfranciscensis gave three products distinguishing this micro-organism from the remaining Lactobacillus species. Sequence analysis revealed that two of the rrn operons were organized as in previously reported lactobacilli: large spacer (L-ISR), containing tRNA(Ile) and tRNA(Ala) genes; small spacer (S-ISR) without tRNA genes. The third described spacer (medium, M-ISR), original for L. sanfranciscensis, harboured a tRNA-like structure. An oligonucleotide sequence targeting the variable region between tDNA(Ile) and tDNA(Ala) of L. sanfranciscensis L-ISR was approved to be suitable in species-specific identification procedure. Analysis by pulse-field gel electrophoresis of the chromosomal digest with the enzyme I-CeuI showed the presence of seven rrn clusters. Lactobacillus sanfranciscensis genome size was estimated at c. 1.3 Mb. CONCLUSIONS: Direct amplification of 16S-23S ISRs or PCR with specific primer derived from L-ISR showed to be useful for specific typing of L. sanfranciscensis. This was due to the specific rrn operon organization of L. sanfranciscensis strains. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have reported a rapid procedure for L. sanfranciscensis identification based on specific structures found in its rrn operon.  相似文献   

20.
AIMS: The restriction fragment length polymorphism (RFLP) method was used to differentiate Lactobacillus species having closely related identities in the 16S-23S rDNA intergenic spacer region (ISR). Species-specific primers for Lact. farciminis and Lact. alimentarius were designed and allowed rapid identification of these species. METHODS AND RESULTS: The 16S-23S rDNA spacer region was amplified by primers tAla and 23S/p10, then digested by HinfI and TaqI enzymes and analysed by electrophoresis. Digestion by HinfI was not sufficient to differentiate Lact. sakei, Lact. curvatus, Lact. farciminis, Lact. alimentarius, Lact. plantarum and Lact. paraplantarum. In contrast, digestion carried out by TaqI revealed five different patterns allowing these species to be distinguished, except for Lact. plantarum from Lact. paraplantarum. The 16S-23S rDNA spacer region of Lact. farciminis and Lact. alimentarius were amplified and then cloned into vector pCR(R)2.1 and sequenced. The DNA sequences obtained were analysed and species-specific primers were designed from these sequences. The specificity of these primers was positively demonstrated as no response was obtained for 14 other species tested. RESULTS AND CONCLUSIONS: The species-specific primers for Lact. farciminis and Lact. alimentarius were shown to be useful for identifying these species among other lactobacilli. The RFLP profile obtained upon digestion with HinfI and TaqI enzymes can be used to discriminate Lact. farciminis, Lact. alimentarius, Lact. sakei, Lact. curvatus and Lact. plantarum. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have established the first species-specific primer for PCR identification of Lact. farciminis and Lact. alimentarius. Both species-specific primer and RFLP, could be used as tools for rapid identification of lactobacilli up to species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号