首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA silencing or interference (RNAi) is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs) that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs) that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication.  相似文献   

2.
Adult rhesus macaques infected with nef-defective simian immunodeficiency virus (SIV) exhibit extremely low levels of steady-state virus replication, do not succumb to immunodeficiency disease, and are protected from experimental challenge with pathogenic isolates of SIV. Similarly, rare humans found to be infected with nef-defective human immunodeficiency virus type 1 (HIV-1) variants display exceptionally low viral burdens and do not show evidence of disease progression after many years of infection. HIV-1 Nef induces the rapid endocytosis and lysosomal degradation of cell surface CD4 and enhances virus infectivity in primary human T cells and macrophages. Although expression of SIV Nef also leads to down-modulation of cell surface CD4 levels, no evidence for SIV Nef-induced enhancement of virus infectivity was observed in earlier studies. Thus, it remains unclear whether fundamental differences exist between the activities of HIV-1 and SIV Nef. To establish more clearly whether the SIV and HIV-1 nef gene products are functionally analogous, we compared the replication kinetics and infectivity of variants of SIVmac239 that either do (SIVnef+) or do not (SIV delta nef) encode intact nef gene products. SIVnef+ replicates more rapidly than nef-defective viruses in both human and rhesus peripheral blood mononuclear cells (PBMCs). As previously described for HIV-1 Nef, SIV Nef also enhances virus infectivity within each cycle of virus replication. As a strategy for evaluating the in vivo contribution of HIV-1 nef alleles and long terminal repeat regulatory sequences to the pathogenesis of immunodeficiency disease, we constructed SIV-HIV chimeras in which the nef coding and U3 regulatory regions of SIVmac239 were replaced by the corresponding regions from HIV-1/R73 (SIVR7nef+). SIVR7nef+ displays enhanced infectivity and accelerated replication kinetics in primary human and rhesus PBMC infections compared to its nef-defective counterpart. Converse chimeras, containing SIV Nef in an HIV-1 background (R7SIVnef+) also exhibit greater infectivity than matched nef-defective viruses (R7SIV delta nef). These data indicate that SIV Nef, like that of HIV-1, does enhance virus replication in primary cells in tissue culture and that HIV-1 and SIV Nef are functionally interchangeable in the context of both HIV-1 and SIV.  相似文献   

3.
Berkhout B  Haasnoot J 《FEBS letters》2006,580(12):2896-2902
RNA interference (RNAi) plays a pivotal role in the regulation of gene expression to control cell development and differentiation. In plants, insects and nematodes RNAi also functions as an innate defence response against viruses. Similarly, there is accumulating evidence that RNAi functions as an antiviral defence mechanism in mammalian cells. Viruses have evolved highly sophisticated mechanisms for interacting with the host cell machinery, and recent evidence indicates that this also involves RNAi pathways. The cellular RNAi machinery can inhibit virus replication, but viruses may also exploit the RNAi machinery for their own replication. In addition, viruses can encode proteins or RNA molecules that suppress existing RNAi pathways or trigger the silencing of specific host genes. Besides the natural interplay between RNAi and viruses, induced RNAi provides an attractive therapy approach for the fight against human pathogenic viruses. Here, we summarize the latest news on virus-RNAi interactions and RNAi based antiviral therapy.  相似文献   

4.
Synthetic small interfering RNAs (siRNAs) have been shown to induce the degradation of specific mRNA targets in human cells by inducing RNA interference (RNAi). Here, we demonstrate that siRNA duplexes targeted against the essential Tat and Rev regulatory proteins encoded by human immunodeficiency virus type 1 (HIV-1) can specifically block Tat and Rev expression and function. More importantly, we show that these same siRNAs can effectively inhibit HIV-1 gene expression and replication in cell cultures, including those of human T-cell lines and primary lymphocytes. These observations demonstrate that RNAi can effectively block virus replication in human cells and raise the possibility that RNAi could provide an important innate protective response, particularly against viruses that express double-stranded RNAs as part of their replication cycle.  相似文献   

5.
The determinants of CD8(+) cytotoxic T-lymphocyte (CTL) antiviral activity against human immunodeficiency virus type 1 (HIV-1) remain poorly defined. Although recent technological advances have markedly enhanced the ability to detect HIV-1-specific T cells, commonly used assays do not reveal their direct interaction with virus. We investigated two determinants of CTL antiviral efficiency by manipulating HIV-1 and measuring the effects on CTL suppression of viral replication in acutely infected cells. Translocation of a Gag epitope into the early protein Nef markedly increased the activity of CTL recognizing that epitope, in comparison to HIV-1 expressing the epitope normally in the late protein Gag. Because this epitope translocation resulted not only in earlier expression but also in loss of major histocompatibility complex class I downregulation by Nef, the activities of CTL against a panel of viral constructs differing in kinetics of epitope expression and class I downmodulation were compared. The results indicated that both the timing of epitope expression and the reduction of class I have profound effects on the ability of CTL to suppress HIV-1 replication in acutely infected cells. The epitope targeting of CTL and viral control of class I therefore likely play important roles in the ability of CTL to exert pressure on HIV-1.  相似文献   

6.
RNAi技术在艾滋病治疗研究中已展现出巨大的潜力,兼具高效抑制特性和保守性的siRNA靶位是其获得成功应用的重要基础.本研究选择以HIV-1 vif基因为靶区筛选高效保守的RNAi序列,共选择设计了30个识别不同位点的siRNA序列,以pSUPER为载体构建了相应的shRNA表达质粒.通过与pNL4-3质粒在293FT细胞中进行共转染抑制实验,以及对初筛获得的高效序列进行保守性分析显示siRNA-vif37序列具有高效抑制效率和较好的保守性特征.通过与pGL3-vif报告质粒的共转染实验证明siRNA-vif37具有vif基因抑制特异性.带有shRNA-vif37表达元件的重组慢病毒转导后的MT-4细胞在HIV-1NL4-3体外攻毒实验中可显示出较有效的抑制病毒复制的能力,本研究进一步对转导后细胞进行克隆化筛选,获得稳定整合shRNA-vif37表达元件的MT-4-vif37细胞克隆,该细胞具有显著的抑制病毒复制的能力,在高攻毒剂量下仍可获得良好的抑制效果.本研究为进一步应用RNAi技术进行新型艾滋病治疗方法研究提供了重要基础.  相似文献   

7.
Design of extended short hairpin RNAs for HIV-1 inhibition   总被引:6,自引:1,他引:5  
RNA interference (RNAi) targeted towards viral mRNAs is widely used to block virus replication in mammalian cells. The specific antiviral RNAi response can be induced via transfection of synthetic small interfering RNAs (siRNAs) or via intracellular expression of short hairpin RNAs (shRNAs). For HIV-1, both approaches resulted in profound inhibition of virus replication. However, the therapeutic use of a single siRNA/shRNA appears limited due to the rapid emergence of RNAi-resistant escape viruses. These variants contain deletions or point mutations within the target sequence that abolish the antiviral effect. To avoid escape from RNAi, the virus should be simultaneously targeted with multiple shRNAs. Alternatively, long hairpin RNAs can be used from which multiple effective siRNAs may be produced. In this study, we constructed extended shRNAs (e-shRNAs) that encode two effective siRNAs against conserved HIV-1 sequences. Activity assays and RNA processing analyses indicate that the positioning of the two siRNAs within the hairpin stem is critical for the generation of two functional siRNAs. E-shRNAs that are efficiently processed into two effective siRNAs showed better inhibition of virus production than the poorly processed e-shRNAs, without inducing the interferon response. These results provide building principles for the design of multi-siRNA hairpin constructs.  相似文献   

8.
The accessory protein Nef plays a crucial role in primate lentivirus pathogenesis. Nef enhances human immunodeficiency virus type 1 (HIV-1) infectivity in culture and stimulates viral replication in primary T cells. In this study, we investigated the relationship between HIV-1 replication efficiency in CD4(+) T cells purified from human blood and two various known activities of Nef, CD4 downregulation and single-cycle infectivity enhancement. Using a battery of reporter viruses containing point mutations in nef, we observed a strong genetic correlation between CD4 downregulation by Nef during acute HIV-1 infection of activated T cells and HIV-1 replication efficiency in T cells. In contrast, HIV-1 replication ability was not significantly correlated with the ability of Nef to enhance single-cycle virion infectivity, as determined by using viruses produced in cells lacking CD4. These results demonstrate that CD4 downregulation by Nef plays a crucial role in HIV-1 replication in activated T cells and underscore the potential for the development of therapies targeting this conserved activity of Nef.  相似文献   

9.
TLR3 functions as a viral nucleic acid sentinel activated by dsRNA viruses and virus replication intermediates within intracellular vesicles. To explore the spectrum of genes induced in human astrocytes by TLR3, we used a microarray approach and the analog polyriboinosinic polyribocytidylic acid (pIC) as ligand. As expected for TLR activation, pIC induced a wide array of cytokines and chemokines known for their role in inflammatory responses, as well as up-regulation of the receptor itself. The data also showed activation of a broad spectrum of antiviral response genes. To determine whether pIC induced an antiviral state in astrocytes, a pseudotyped HIV viral particle, vesicular stomatitis virus g-env-HIV-1, was used. pIC significantly abrogated HIV-1 replication, whereas IL-1, which also potently activates astrocytes, did not. One of the most highly up-regulated genes on microarray was the protein viperin/cig5. We found that viperin/cig5 expression was dependent on IFN regulatory factor 3 and NF-kappaB signaling, and that repetitive stimulation with pIC, but not IL-1, further increased expression. Viperin induction could also be substantially inhibited by neutralizing Abs to IFN-beta, as could HIV-1 replication. To explore a role for viperin in IFN-beta-mediated inhibition of HIV-1, we used an RNA interference (RNAi) approach. RNAi directed against viperin, but not a scrambled RNAi, significantly inhibited viperin expression, and also significantly reversed pIC-induced inhibition of HIV-1 replication. We conclude that viperin contributes to the antiviral state induced by TLR3 ligation in astrocytes, supporting a role for astrocytes as part of the innate immune response against infection in the CNS.  相似文献   

10.
Human immunodeficiency virus type 1 escape from RNA interference   总被引:20,自引:0,他引:20       下载免费PDF全文
Boden D  Pusch O  Lee F  Tucker L  Ramratnam B 《Journal of virology》2003,77(21):11531-11535
Sequence-specific degradation of mRNA by short interfering RNA (siRNA) allows the selective inhibition of viral proteins that are critical for human immunodeficiency virus type 1 (HIV-1) replication. The aim of this study was to characterize the potency and durability of virus-specific RNA interference (RNAi) in cell lines that stably express short hairpin RNA (shRNA) targeting the HIV-1 transactivator protein gene tat. We found that the antiviral activity of tat shRNA was abolished due to the emergence of viral quasispecies harboring a point mutation in the shRNA target region. Our results suggest that, in order for RNAi to durably suppress HIV-1 replication, it may be necessary to target highly conserved regions of the viral genome. Alternatively, similar to present antiviral drug therapy paradigms, DNA constructs expressing multiple siRNAs need to be developed that target different regions of the viral genome, thereby reducing the probability of generating escape mutants.  相似文献   

11.
Y Huang  L Zhang    D D Ho 《Journal of virology》1995,69(12):8142-8146
We have previously shown that there were no gross deletions or obvious sequence abnormalities within nef of human immunodeficiency virus type 1 (HIV-1) in the 10 long-term survivors studied (Y. Huang, L. Zhang, and D. D. Ho, J. Virol. 69:93-100, 1995). Here we extend our study to examine these nef alleles in a functional context. Using a new technique, termed site-directed gene replacement, we have precisely replaced the nef of an infectious molecular clone, HIV-1HXB2, with nef alleles derived from 10 long-term survivors as well as from a patient with AIDS. The replication properties of these chimeric viruses demonstrated that the nef alleles derived from long-term survivors neither significantly increased nor decreased viral replication, compared with the nef allele of Nef+ HIV-1HXB2 and that derived from a patient with AIDS. However, Nef+ viruses always replicated faster than virus lacking nef. Moreover, single-cell infection analysis by the MAGI assay showed that these chimeric viruses, as well as Nef+ HIV-1HXB2, were more infectious than Nef- HIV-1HXB2 was. Therefore, we conclude that the genotypic and phenotypic features of nef are not likely to account for the nonprogression of HIV-1 infection in the 10 cases studied, unless the function of the nef gene in vivo is not accurately reflected by the in vitro assays we used.  相似文献   

12.
The nef gene product of human immunodeficiency virus type 1 (HIV-1) promotes more-rapid kinetics of viral replication in primary peripheral blood mononuclear cells. We have previously shown that these enhancing effects of Nef on HIV-1 replication reflect an increase in viral infectivity detectable both in limiting dilution assays and through a single-cycle infection of the HeLa-CD4-long terminal repeat-beta-galactosidase indicator cell line. We now demonstrate that nef-defective HIV-1 can be rescued to near wild-type levels of infectivity by coexpressing Nef in trans in the cell line producing the virus. This observation indicates that HIV-1 virions produced in the presence of Nef are intrinsically different. However, we show that the major viral structural proteins are quantitatively similar in purified viral preparations. We also demonstrate the functional equivalence of the gp120-gp41 envelope glycoprotein complexes of Nef+ and Nef- HIV-1 through an assay for viral entry. Finally, we show that env-defective Nef+ HIV-1 pseudotyped with an amphotropic envelope is also more infectious than similarly pseudotyped Nef- HIV-1. Thus, the production of HIV-1 in the presence of Nef results in viral particles that are more infectious, and this increased infectivity is manifested at a stage after viral entry but prior to or coincident with HIV-1 gene expression.  相似文献   

13.
The Nef protein enhances human immunodeficiency virus type 1 (HIV-1) replication through an unknown mechanism. We and others have previously reported that efficient HIV-1 replication in activated primary CD4(+) T cells depends on the ability of Nef to downregulate CD4 from the cell surface. Here we demonstrate that Nef greatly enhances the infectivity of HIV-1 particles produced in primary T cells. Nef-defective HIV-1 particles contained significantly reduced quantities of gp120 on their surface; however, Nef did not affect the levels of virion-associated gp41, indicating that Nef indirectly stabilizes the association of gp120 with gp41. Surprisingly, Nef was not required for efficient replication of viruses that use CCR5 for entry, nor did Nef influence the infectivity or gp120 content of these virions. Nef also inhibited the incorporation of CD4 into HIV-1 particles released from primary T cells. We propose that Nef, by downregulating cell surface CD4, enhances HIV-1 replication by inhibiting CD4-induced dissociation of gp120 from gp41. The preferential requirement for Nef in the replication of X4-tropic HIV-1 suggests that the ability of Nef to downregulate CD4 may be most important at later stages of disease when X4-tropic viruses emerge.  相似文献   

14.
D Harrich  C Hsu  E Race    R B Gaynor 《Journal of virology》1994,68(9):5899-5910
The human immunodeficiency virus type 1 (HIV-1) TAR element is critical for the activation of gene expression by the transactivator protein, Tat. Mutagenesis has demonstrated that a stable stem-loop RNA structure containing both loop and bulge structures transcribed from TAR is the major target for tat activation. Though transient assays have defined elements critical for TAR function, no studies have yet determined the role of TAR in viral replication because of the inability to generate viral stocks containing mutations in TAR. In the current study, we developed a strategy which enabled us to generate stable 293 cell lines which were capable of producing high titers of different viruses containing TAR mutations. Viruses generated from these cell lines were used to infect both T-lymphocyte cell lines and peripheral blood mononuclear cells. Viruses containing TAR mutations in either the upper stem, the bulge, or the loop exhibited dramatically decreased HIV-1 gene expression and replication in all cell lines tested. However, we were able to isolate lymphoid cell lines which stably expressed gene products from each of these TAR mutant viruses. Though the amounts of virus in these cell lines were roughly equivalent, cells containing TAR mutant viruses were extremely defective for gene expression compared with cell lines containing wild-type virus. The magnitude of this decrease in viral gene expression was much greater than previously seen in transient expression assays using HIV-1 long terminal repeat chloramphenicol acetyltransferase gene constructs. In contrast to the defects in viral growth found in T-lymphocyte cell lines, several of the viruses containing TAR mutations were much less defective for gene expression and replication in activated peripheral blood mononuclear cells. These results indicate that maintenance of the TAR element is critical for viral gene expression and replication in all cell lines tested, though the cell type which is infected is also a major determinant of the replication properties of TAR mutant viruses.  相似文献   

15.
The human immunodeficiency virus type 1 (HIV-1) Nef protein is an important virulence factor. Nef has several functions, including down-modulation of CD4 and class I major histocompatibility complex cell surface expression, enhancement of virion infectivity, and stimulation of viral replication in peripheral blood mononuclear cells. Nef also increases HIV-1 replication in human lymphoid tissue (HLT) ex vivo. We analyzed recombinant and primary nef alleles with highly divergent activity in different in vitro assays to clarify which of these Nef activities are functionally linked. Our results demonstrate that Nef activity in CD4 down-regulation correlates significantly with the efficiency of HIV-1 replication and with the severity of CD4(+) T-cell depletion in HLT. In conclusion, HIV-1 Nef variants with increased activity in CD4 down-modulation would cause severe depletion of CD4(+) T cells in lymphoid tissues and accelerate AIDS progression.  相似文献   

16.
Although CD8+ cytotoxic T lymphocytes (CTLs) are protective in HIV-1 infection, the factors determining their antiviral efficiency are poorly defined. It is proposed that Gag targeting is superior because of very early Gag epitope presentation, allowing early killing of infected cells before Nef-mediated downregulation of human leukocyte antigen class I (HLA-I). To study Gag epitope presentation kinetics, three epitopes (SL977-85, KF11162-172, and TW10240-249) were genetically translocated from their endogenous location in the Rev-dependent (late) gag gene into the Rev-independent (early) nef gene with concomitant mutation of the corresponding endogenous epitopes to nonrecognized sequences. These viruses were compared to the index virus for CTL-mediated suppression of replication and the susceptibility of this antiviral activity to Nef-mediated HLA-I downregulation. SL9-specific CTLs gained activity after SL9 translocation to Nef, going from Nef sensitive to Nef insensitive, indicating that translocation accelerated infected cell recognition from after to before HLA-I downregulation. KF11-specific CTL antiviral activity was unchanged and insensitive to HLA-I downregulation before and after KF11 translocation, suggesting that already rapid recognition of infected cells was not accelerated. However, TW10-specific CTLs that were insensitive to Nef at the baseline became sensitive with reduced antiviral activity after translocation, indicating that translocation retarded epitope expression. Cytosolic peptide processing assays suggested that TW10 was inefficiently generated after translocation to Nef, compared to SL9 and KF11. As a whole, these data demonstrate that epitope presentation kinetics play an important role in CTL antiviral efficiency, that Gag epitopes are not uniformly presented early, and that the epitope context can play a major role in presentation kinetics.  相似文献   

17.
Cells of the monocyte lineage act as a major reservoir for HIV, and ways of enhancing the resistance of mononuclear phagocytes to HIV replication would be useful for delaying the onset of AIDS in infected individuals. Seif et al. (J. Virol. 65:664, 1991) have recently shown the possibility of obtaining stable antiviral expression (SAVE), directed against three nonretroviral RNA viruses, and normal cell viability in a significant percentage of murine BALB/c 3T3 cells transformed with an IFN-beta expression plasmid under the control of the 0.6-kb XhoII-NruI promoter region of the murine H-2Kb MHC gene. In the present paper, we show that it is possible to establish SAVE in human promonocytic cells. Cells of the human promonocytic U937 line were stably transfected with a human IFN-beta expression plasmid carrying the neo- and human IFN-beta-coding sequences under the control of the H-2Kb promoter fragment previously used in murine cells. After selection with G418, two transformed clones were isolated that released small amounts of human IFN-beta into the culture medium, without affecting the expression of CD4 and leucocyte function-associated Ag-1 differentiation Ag. The presence of construct-derived IFN-beta mRNA was demonstrated by polymerase chain reaction amplification of cDNA, and the level of 2-5A synthetase, one of the major IFN-induced antiviral proteins, was shown to be constitutively increased. These clones were less permissive for HIV-1 than control clones transformed with the neo gene only. The antiviral state could be modulated by anti-IFN-beta antibodies, in that the continuous presence of antibodies in the culture medium abolished the enhanced resistance to HIV-1 replication, whereas the withdrawal of the antiserum restored the antiviral state, indicating that it did indeed result from the constitutive synthesis of human IFN-beta. These results demonstrate the possibility of restricting HIV-1 replication in human promonocytic cells by establishing SAVE. Further exploration of this method as a possible approach to somatic cell gene therapy of HIV infection appears worthwhile.  相似文献   

18.
CCR5 serves as a requisite fusion coreceptor for clinically relevant strains of human immunodeficiency virus type 1 (HIV-1) and provides a promising target for antiviral therapy. However, no study to date has examined whether monoclonal antibodies, small molecules, or other nonchemokine agents possess broad-spectrum activity against the major genetic subtypes of HIV-1. PRO 140 (PA14) is an anti-CCR5 monoclonal antibody that potently inhibits HIV-1 entry at concentrations that do not affect CCR5's chemokine receptor activity. In this study, PRO 140 was tested against a panel of primary HIV-1 isolates selected for their genotypic and geographic diversity. In quantitative assays of viral infectivity, PRO 140 was compared with RANTES, a natural CCR5 ligand that can inhibit HIV-1 entry by receptor downregulation as well as receptor blockade. Despite their divergent mechanisms of action and binding epitopes on CCR5, low nanomolar concentrations of both PRO 140 and RANTES inhibited infection of primary peripheral blood mononuclear cells (PBMC) by all CCR5-using (R5) viruses tested. This is consistent with there being a highly restricted pattern of CCR5 usage by R5 viruses. In addition, a panel of 25 subtype C South African R5 viruses were broadly inhibited by PRO 140, RANTES, and TAK-779, although approximately 30-fold-higher concentrations of the last compound were required. Interestingly, significant inhibition of a dualtropic subtype C virus was also observed. Whereas PRO 140 potently inhibited HIV-1 replication in both PBMC and primary macrophages, RANTES exhibited limited antiviral activity in macrophage cultures. Thus CCR5-targeting agents such as PRO 140 can demonstrate potent and genetic-subtype-independent anti-HIV-1 activity.  相似文献   

19.
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism in eukaryotes, which is believed to function as a defence against viruses and transposons. Since its discovery, RNAi has been developed into a widely used technique for generating genetic knock-outs and for studying gene function by reverse genetics. Additionally, inhibition of virus replication by means of induced RNAi has now been reported for numerous viruses, including several important human pathogens such as human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, dengue virus, poliovirus and influenza virus A. In this review, we will summarize the current data on RNAi-mediated inhibition of virus replication and discuss the possibilities for the development of RNAi-based antiviral therapeutics.  相似文献   

20.
RNA interference (RNAi) has been considered as an efficient therapeutic approach against the human immunodeficiency virus type 1 (HIV-1). However, to establish a durable inhibition of HIV-1, multiple effective short hairpin RNAs (shRNAs) need to be stably expressed to prevent the emergence of viral escape variants. In this study, we engineered a randomized lentiviral H1-promoter driven shRNA-library against the viral genome. Potent HIV-1 specific shRNAs were selected by ganciclovir treatment of cell lines stably expressing the cDNA of Herpes Simplex Virus thymidine kinase (HSV-TK) fused to HIV-1 nucleotide sequences. More than 50% of 200 selected shRNAs inhibited an HIV-1 based luciferase reporter assay by more than 70%. Stable expression of some of those shRNAs in an HIV-1 permissive HeLa cell line inhibited infection of wild-type HIV-1 by more than 90%. The combination of a randomized shRNA-library directed against HIV-1 with a live cell selection procedure yielded non-toxic and highly efficient HIV-1 specific inhibitory sequences that could serve as valuable candidates for gene therapy studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号