首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
nsdA基因是在天蓝色链霉菌中发现的抗生素合成负调控基因。以nsdA基因片段为探针,通过Southern杂交发现nsdA存在于多种链霉菌中。根据天蓝色链霉菌和阿维链霉菌的nsdA序列设计PCR引物,扩增多种链霉菌中nsdA基因并测序。发现在不同链霉菌中nsdA基因的相似性高达77%~100%。其中变铅青链霉菌与天蓝色链霉菌A3(2)的nsdA序列100%一致。变铅青链霉菌通常不合成放线紫红素,中断nsdA获得的突变菌株WQ2能够合成放线紫红素;在WQ2中重新引入野生型nsdA,又失去产抗生素能力。表明nsdA的中断可以激活变铅青链霉菌中沉默的放线紫红素生物合成基因簇的表达;nsdA的广泛存在及其序列高度保守则提示可以尝试用于这些菌种的抗生素高产育种。  相似文献   

3.
4.
The genes of Streptomyces coelicolor A3(2) encoding catalytic subunits (ClpP) and regulatory subunits (ClpX and ClpC) of the ATP-dependent protease family Clp were cloned, mapped and characterized. S. coelicolor contains at least two clpP genes, clpP1 and clpP2, located in tandem upstream from the clpX gene, and at least two unlinked clpC genes. Disruption of the clpP1 gene in S. lividans and S. coelicolor blocks differentiation at the substrate mycelium step. Overexpression of clpP1 and clpP2 accelerates aerial mycelium formation in S. lividans, S. albus and S. coelicolor. Overproduction of ClpX accelerates actinorhodin production in S. coelicolor and activates its production in S. lividans.  相似文献   

5.
6.
A metK gene encoding S-adenosyl-L-methionine synthetase was cloned from the non-Streptomyces actinomycetes, Actinoplanes teichomyceticus ATCC31121. In order to evaluate the effect of the metK expression on antibiotic production in actinomycetes, an expression vector harboring the metK gene was constructed and introduced into Streptomyces lividans TK24 and A. teichomyceticus, and the antibiotic production of the exconjugants was assessed. As a result, it was determined that the expression of metK induced 17-fold and 2.2-fold increases in actinorhodin production from S. lividans TK24 and teicoplanin production from A. teichomyceticus, respectively, compared with the control strains.  相似文献   

7.
A strain of Streptomyces lividans, TK24, was found to produce a pigmented antibiotic, actinorhodin, although S. lividans normally does not produce this antibiotic. Genetic analyses revealed that a streptomycin-resistant mutation str-6 in strain TK24 is responsible for induction of antibiotic synthesis. DNA sequencing showed that str-6 is a point mutation in the rpsL gene encoding ribosomal protein S12, changing Lys-88 to Glu. Gene replacement experiments with the Lys88-->Glu str allele demonstrated unambiguously that the str mutation is alone responsible for the activation of actinorhodin production observed. In contrast, the strA1 mutation, a genetic marker frequently used for crosses, did not restore actinorhodin production and was found to result in an amino acid alteration of Lys-43 to Asn. Induction of actinorhodin production was also detected in strain TK21, which does not harbor the str-6 mutation, when cells were incubated with sufficient streptomycin or tetracycline to reduce the cell's growth rate, and 40 and 3% of streptomycin- or tetracycline-resistant mutants, respectively, derived from strain TK21 produced actinorhodin. Streptomycin-resistant mutations also blocked the inhibitory effects of relA and brgA mutations on antibiotic production, aerial mycelium formation or both. These str mutations changed Lys-88 to Glu or Arg and Arg-86 to His in ribosomal protein S12. The decrease in streptomycin production in relC mutants in Streptomyces griseus could also be abolished completely by introducing streptomycin-resistant mutations, although the impairment in antibiotic production due to bldA (in Streptomyces coelicolor) or afs mutations (in S. griseus) was not eliminated. These results indicate that the onset and extent of secondary metabolism in Streptomyces spp. is significantly controlled by the translational machinery.  相似文献   

8.
Deletion of scbA enhances antibiotic production in Streptomyces lividans   总被引:2,自引:0,他引:2  
Antibiotic production in many streptomycetes is influenced by extracellular gamma-butyrolactone signalling molecules. In this study, the gene scbA, which had been shown previously to be involved in the synthesis of the gamma-butyrolactone SCB1 in Streptomyces coelicolor A3(2), was deleted from the chromosome of Streptomyces lividans 66. Deletion of scbA eliminated the production of the antibiotic stimulatory activity previously associated with SCB1 in S. coelicolor. When the S. lividans scbA mutant was transformed with a multi-copy plasmid carrying the gene encoding the pathway-specific activator for either actinorhodin or undecylprodigiosin biosynthesis, production of the corresponding antibiotic was elevated significantly compared to the corresponding scbA(+) strain carrying the same plasmid. Consequently, deletion of scbA may be useful in combination with other strategies to construct host strains capable of improved bioactive metabolite production.  相似文献   

9.
10.
Production of the blue-pigmented antibiotic actinorhodin is greatly enhanced in Streptomyces lividans and Streptomyces coelicolor by transformation with a 2.7-kb DNA fragment from the S. coelicolor chromosome cloned on a multicopy plasmid. Southern analysis, restriction map comparisons, and map locations of the cloned genes revealed that these genes were different from other known S. coelicolor genes concerned with actinorhodin biosynthesis or its pleiotropic regulation. Computer analysis of the DNA sequence showed five putative open reading frames (ORFs), which were named ORFA, ORFB, and ORFC (transcribed in one direction) and ORFD and ORFE (transcribed in the opposite direction). Subcloning experiments revealed that ORFB together with 137 bp downstream of it is responsible for antibiotic overproduction in S. lividans. Insertion of a phi C31 prophage into ORFB by homologous recombination gave rise to a mutant phenotype in which the production of actinorhodin, undecylprodigiosin, and the calcium-dependent antibiotic (but not methylenomycin) was reduced or abolished. The nonproducing mutants were not affected in the timing or vigor or sporulation. A possible involvement of ORFA in antibiotic production in S. coelicolor is not excluded. abaA constitutes a new locus which, like the afs and abs genes previously described, pleiotropically regulates antibiotic production. DNA sequences that hybridize with the cloned DNA are present in several different Streptomyces species.  相似文献   

11.
S Horinouchi  O Hara    T Beppu 《Journal of bacteriology》1983,155(3):1238-1248
A-factor (2S-isocapryloyl-3S-hydroxymethyl-gamma-butyrolactone), an autoregulating factor originally found in Streptomyces griseus, is involved in streptomycin biosynthesis and cell differentiation in this organism. A-factor production is widely distributed among actinomycetes, including Streptomyces coelicolor A3(2) and Streptomyces lividans. A chromosomal pleiotropic regulatory gene of S. coelicolor A3(2) controlling biosynthesis of A-factor and red pigments was cloned with a spontaneous A-factor-deficient strain of S. lividans HH21 and plasmid pIJ41 as a host-vector system. The restriction endonuclease KpnI-digested chromosomal fragments were ligated into the plasmid vector and introduced by transformation into the protoplasts of strain HH21. Three red transformants thus selected were found to produce A-factor and to carry a plasmid with the same molecular weight, and a 6.4-megadalton fragment was inserted in the KpnI site of pIJ41. By restriction endonuclease mapping and subcloning, a restriction fragment (1.2 megadaltons, approximately 2,000 base pairs) bearing the gene which causes concomitant production of A-factor and red pigments was determined. The red pigments were identified by thin-layer chromatography and spectroscopy to be actinorhodin and prodigiosin, both of which are the antibiotics produced by S. coelicolor A3(2). The cloned fragment was introduced into the A-factor-negative mutants (afs) of S. coelicolor A3(2) by using pIJ702 as the vector, where it complemented one of these mutations, afsB, characterized by simultaneous loss of A-factor and red pigment production. We conclude that the cloned gene pleiotropically and positively controls the biosynthesis of A-factor, actinorhodin, and prodigiosin.  相似文献   

12.
13.
14.
Abstract A DNA fragment that caused pigment production in Streptomyces lividans was isolated from a gene library of Pst I-digested chromosomal fragments of S. coelicolor A3(2). Subcloning and nucleotide sequencing proved the identity of the cloned gene to ptpA encoding a low-molecular-mass phosphotyrosine protein phosphatase. The S. lividans transformant containing ptpA on pIJ41 with a copy number of 3–4 per genome produced large amounts of undecylprodigiosin and A-factor, in addition to the pigmented antibiotic actinorhodin, whereas the transformant containing ptpA on an SCP2* derivative with a copy number of 1–2 did not. The PtpA protein produced as a fusion to the maltose binding protein in Escherichia coli showed phosphatase activity toward o -phosphotyrosine, but not toward o -phosphoserine or o -threonine. Introduction of a mutant ptpA gene encoding an inactive protein with serine instead of the 9th cysteine caused no pigmentation. Disruption of the chromosomal ptpA gene of S. coelicolor A3(2), however, appeared to cause no detectable effect on the production of the pigmented antibiotics or A-factor and the ptpA disruptants developed aerial mycelium and spores normally.  相似文献   

15.
The AfsR protein is essential for the biosynthesis at the wild-type level of A-factor, actinorhodin, and undecylprodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. Because overexpression of the afsR gene caused some deleterious effect on these strains, a multicopy plasmid carrying the whole afsR gene was introduced into Streptomyces griseus, from which a crude cell lysate was prepared as a protein source. The AfsR protein was purified to homogeneity from the cytoplasmic fraction through several steps of chromatography, including affinity column chromatography with ATP-agarose and use of anti-AfsR antibody for its detection. The molecular weight of AfsR was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by gel filtration to be 105,300, which is in good agreement with that deduced from the nucleotide sequence of afsR. The purified AfsR protein was found to be phosphorylated through the transfer of the gamma-phosphate group of ATP in the presence of the cell extracts of S. coelicolor A3(2) and S. lividans. This phosphorylation proceeded very rapidly, and no competition was observed with CTP, GTP, UTP, or cyclic AMP. In the cell extract of S. griseus, no activity phosphorylating the AfsR protein was detected, suggesting that this activity is not generally present in Streptomyces spp. but is specific to certain species. It is conceivable that the extent of phosphorylation of the AfsR protein modulates its regulatory activity which, in turn, regulates expression of some target gene(s) involved in the secondary-metabolite formation in S. coelicolor A3(2).  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号