首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
目的:在天蓝色链霉菌Streptomyces coelicolor A3(2)中多效性调节因子AtrA(AtrA-c)可通过激活放线紫红素途径特异性的调节因子ActII-ORF4的转录来控制放线紫红素的产生。在灰色链霉菌Streptomyces griseus NBRC13350和阿维链霉菌Streptomyces avermitilis MA-4680中也发现了AtrA-c 编码基因(atrA-c)的同源基因,分别影响链霉素和阿维菌素的生物合成。本文目的在于探索球孢链霉菌C-1027(Streptomyces globisporus C-1027)中是否存在AtrA,克隆球孢链霉菌C-1027中atrA基因并进行生物信息学分析,为进一步确定其对力达霉素产生的调控作用及调控机制奠定基础。[方法] 采用在球孢链霉菌C-1027中异源表达AtrA-c,来确定AtrA-c对力达霉素产量的影响;通过Southern blot 分析来判断在球孢链霉菌C-1027 基因组中是否有atrA-c同源基因;PCR扩增方法获得球孢链霉菌C-1027 atrA基因(atrA-gl)并测序;通过多种生物信息学软件来分析atrA-gl及其与旁侧基因的组织结构、对已发现的AtrA蛋白进行同源性比对及亲缘关系分析。[结果]在球孢链霉菌C-1027中异源表达天蓝色链霉菌AtrA-c蛋白,发现其对力达霉素的产量有影响。以atrA-c为探针,通过Southern blot分析显示球孢链霉菌C-1027基因组中存在atrA-c的同源基因。PCR扩增得到球孢链霉菌C-1027 的atrA基因的全序列以及该基因上下游的旁侧序列(GenBank/EMBL/DDBJ 登录号GU723707)。通过对球孢链霉菌C-1027、天蓝色链霉菌A3(2)、灰色链霉菌NBRC13350以及阿维链霉菌MA-4680 AtrA蛋白序列进行同源性分析发现,四种AtrA蛋白编码氨基酸序列一致性达到65%至 87%,相似性高达70% 至89%。并且,球孢链霉菌C-1027 atrA基因与相邻基因形成的组织结构与天蓝色链霉菌和灰色链霉菌完全一致。根据蛋白质同源性绘制进化树,发现球孢链霉菌AtrA蛋白与灰色链霉菌AtrA蛋白亲缘关系最近。[结论]确定在球孢链霉菌C-1027中存在atrA同源基因并影响力达霉素的产量,克隆了首个力达霉素生物合成基因簇外的调节基因--atrA基因,通过生物信息学分析初步推测了该基因的功能,为进一步研究AtrA-gl对力达霉素途径特异性级联调控网络的调控关系奠定了基础。  相似文献   

5.
6.
Production of the blue-pigmented antibiotic actinorhodin is greatly enhanced in Streptomyces lividans and Streptomyces coelicolor by transformation with a 2.7-kb DNA fragment from the S. coelicolor chromosome cloned on a multicopy plasmid. Southern analysis, restriction map comparisons, and map locations of the cloned genes revealed that these genes were different from other known S. coelicolor genes concerned with actinorhodin biosynthesis or its pleiotropic regulation. Computer analysis of the DNA sequence showed five putative open reading frames (ORFs), which were named ORFA, ORFB, and ORFC (transcribed in one direction) and ORFD and ORFE (transcribed in the opposite direction). Subcloning experiments revealed that ORFB together with 137 bp downstream of it is responsible for antibiotic overproduction in S. lividans. Insertion of a phi C31 prophage into ORFB by homologous recombination gave rise to a mutant phenotype in which the production of actinorhodin, undecylprodigiosin, and the calcium-dependent antibiotic (but not methylenomycin) was reduced or abolished. The nonproducing mutants were not affected in the timing or vigor or sporulation. A possible involvement of ORFA in antibiotic production in S. coelicolor is not excluded. abaA constitutes a new locus which, like the afs and abs genes previously described, pleiotropically regulates antibiotic production. DNA sequences that hybridize with the cloned DNA are present in several different Streptomyces species.  相似文献   

7.
8.
The downstream gene controlled by promoter--PTH4 which is related to Streptomyces differentiation was cloned, and its sequence was determined by the dideoxy chain termination method. The results indicated that the 1597 bp of DNA fragment conferred a complete open reading frame (ORF). In searches of databases, the deduced product of the ORF was not homologous with any known proteins; it may be a new protein. The function of the gene was studied using the strategy of gene disruption; the actinorhodin could not be produced when this gene was disrupted. Therefore, this gene may be related to actinorhodin biosynthesis in Streptomyces coelicolor, and the result also shows that this gene may play a role in multiple level regulation of differentiation genes in Streptomyces.  相似文献   

9.
10.
The downstream gene controlled by promoter--PTH4 which is related to Streptomycesdifferentiation was cloned, and its sequence was determined by the dideoxy chain termination method. The results indicated that the 1597 bp of DNA fragment conferred a complete open reading frame (ORF). In searches of databases, the deduced product of the ORF was not homologous with any known proteins; it may be a new protein. The function of the gene was studied using the strategy of gene disruption; the actinorhodin could not be produced when this gene was disrupted. Therefore, this gene may be related to actinorhodin biosynthesis in Streptomyces coelicolor, and the result also shows that this gene may play a role in multiple level regulation of differentiation genes in Streptomyces.  相似文献   

11.
12.
Streptomyces lividans 1326 usually does not produce the red/blue colored polyketide actinorhodin in liquid culture even though it carries the entire actinorhodin biosynthesis gene cluster. The bacterium can be forced to produce this secondary metabolite by introducing actII-ORF4, the actinorhodin pathway-specific activator gene from Streptomyces coelicolor, on a multicopy plasmid. The production of actinorhodin by such a strain has been optimized by medium and process manipulations in fed-batch cultures. With high-yield cultivation conditions, 5 g actinorhodin/l are produced during 7 days of cultivation; or approximately 0.1 g actinorhodin/g dry weight (DW)/day in the production phase. The yield in this phase is 0.15 Cmol actinorhodin/Cmol glucose, which is in the range of 25% to 40% of the maximum theoretical yield. This high-level production mineral medium is phosphate limited. In contrast, nitrogen limitation resulted in low-level production of actinorhodin and high production of α-ketoglutaric acid. Ammonium as nitrogen source was superior to nitrate supporting an almost three times higher actinorhodin yield as well as a two times higher specific production rate. The wild-type strain lacking the multicopy plasmid did not produce actinorhodin when cultivated under any of these conditions. This work examines the actinorhodin-producing potential of the strain, as well as the necessity to improve the culture conditions to fully utilize this potential. The overexpression of biosynthetic pathway-specific activator genes seems to be a rational first step in the design of secondary metabolite overproducing strains prior to alteration of primary metabolic pathways for redirection of metabolic fluxes. Journal of Industrial Microbiology & Biotechnology (2002) 28, 103–111 DOI: 10.1038/sj/jim/7000219 Received 04 April 2001/ Accepted in revised form 30 October 2001  相似文献   

13.
Li W  Ying X  Guo Y  Yu Z  Zhou X  Deng Z  Kieser H  Chater KF  Tao M 《Journal of bacteriology》2006,188(24):8368-8375
SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification of the open reading frame SCO5582 as nsdA, a gene negatively affecting Streptomyces differentiation. The disruption of chromosomal nsdA caused the overproduction of spores and of three of four known S. coelicolor antibiotics of quite different chemical types. In at least one case (that of actinorhodin), this was correlated with premature expression of a pathway-specific regulatory gene (actII-orf4), implying that nsdA in the wild-type strain indirectly repressed the expression of the actinorhodin biosynthesis cluster. nsdA expression was up-regulated upon aerial mycelium initiation and was strongest in the aerial mycelium. NsdA has DUF921, a Streptomyces protein domain of unknown function and a conserved SXR site. A site-directed mutation (S458A) in this site in NsdA abolished its function. Blast searching showed that NsdA homologues are present in some Streptomyces genomes. Outside of streptomycetes, NsdA-like proteins have been found in several actinomycetes. The disruption of the nsdA-like gene SCO4114 had no obvious phenotypic effects on S. coelicolor. The nsdA orthologue SAV2652 in S. avermitilis could complement the S. coelicolor nsdA-null mutant phenotype.  相似文献   

14.
15.
16.
17.
An Escherichia coli-actinomycete shuttle vector, pCJW93, was constructed which places cloned genes under the control of the thiostrepton-inducible tip promoter from Streptomyces lividans. We also constructed expression vectors bearing the actII-ORF4/PactI activator-promoter system of the actinorhodin biosynthetic pathway of Streptomyces coelicolor. With both types of vector, levels of expression varied widely in different actinomycete strains, indicating different levels of the host factors needed for optimal expression. Deletion of the actII-ORF4 activator gene from one such plasmid in Saccharopolyspora erythraea drastically reduced expression from the cognate actI promoter, showing that host factors are required for optimal production of the activator protein itself. However, a low copy number expression vector pWIZ1 for the polyketide synthase DEBS1-TE, in which the promoter for the activator gene was replaced by the strong heterologous ermE* promoter of S. erythraea directed highly efficient production of polyketide synthase protein in Streptomyces cinnamonensis; and the levels of triketide lactone product found were up to 100-fold greater than were produced by the same plasmid in which actII-ORF4 was expressed from its own promoter. Ensuring appropriate expression of a specific activator protein should enable more convenient and consistent heterologous expression of genes in a broad range of actinomycete hosts.  相似文献   

18.
19.
The filamentous soil bacterium Streptomyces coelicolor is known to produce four antibiotics which are genetically and structurally distinct. An extensive search for antibiotic regulatory mutants led to the discovery of absB mutants, which are antibiotic deficient but sporulation proficient. Genetic analysis of the absB mutants has resulted in definition of the absB locus at 5 o'clock on the genetic map. Multiple cloned copies of the actII-ORF4 gene, an activator of synthesis of the antibiotic actinorhodin, restore actinorhodin biosynthetic capability to the absB mutants. These results are interpreted to mean that the failure of absB mutants to produce antibiotics results from decreased expression of the antibiotic genes. The absB gene is proposed to be involved in global regulation of antibiotic synthesis.  相似文献   

20.
Sequencing of a 4.3-kb DNA region from the chromosome of Streptomyces argillaceus, a mithramycin producer, revealed the presence of two open reading frames (ORFs). The first one (orfA) codes for a protein that resembles several transport proteins. The second one (mtmR) codes for a protein similar to positive regulators involved in antibiotic biosynthesis (DnrI, SnoA, ActII-orf4, CcaR, and RedD) belonging to the Streptomyces antibiotic regulatory protein (SARP) family. Both ORFs are separated by a 1.9-kb, apparently noncoding region. Replacement of the mtmR region by an antibiotic resistance cassette completely abolished mithramycin biosynthesis. Expression of mtmR in a high-copy-number vector in S. argillaceus caused a 16-fold increase in mithramycin production. The mtmR gene restored actinorhodin production in Streptomyces coelicolor JF1 mutant, in which the actinorhodin-specific activator ActII-orf4 is inactive, and also stimulated actinorhodin production by Streptomyces lividans TK21. A 241-bp region located 1.9 kb upstream of mtmR was found to be repeated approximately 50 kb downstream of mtmR at the other end of the mithramycin gene cluster. A model to explain a possible route for the acquisition of the mithramycin gene cluster by S. argillaceus is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号