首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A surface plasmon resonance (SPR) imaging system was constructed and used to detect the affinity-tagged recombinant proteins expressed in Escherichia coli. With regards to model proteins, the hexahistidine-ubiquitin-tagged human growth hormone (His(6)-Ub-hGH), glutathione S-transferase-tagged human interleukin-6 (GST-hIL6), and maltose-binding protein-tagged human interleukin-6 (MBP-hIL6) expressed in E. coli were analyzed. The cell lysates were spotted on gold thin films coated with 11-mercaptoundecanol (MUOH)/dextran derivatized with Ni(II)-iminodiacetic acid (IDA-Ni(II)), glutathione, or cyclodextrin. After a brief washing of the gold chip, SPR imaging measurements were carried out in order to detect the bound affinity-tagged fusion proteins. Using this new approach, rapid high-throughput expression analysis of the affinity-tagged proteins were obtained. The SPR imaging protein chip system used to measure the expression of affinity-tagged proteins in a high-throughput manner is expected to be an attractive alternative to traditional laborious and time-consuming methods, such as SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blots.  相似文献   

2.
Most current methods for purification and identification of protein complexes use endogenous expression of affinity-tagged bait, tandem affinity tag purification of protein complexes followed by specific elution of complexes from beads, and gel separation and in-gel digestion prior to mass spectrometric analysis of protein interactors. We propose a single affinity tag in vitro pull-down assay with denaturing elution, trypsin digestion in organic solvent, and LC-ESI MS/MS protein identification using SEQUEST analysis. Our method is simple and easy to scale-up and automate, making it suitable for high-throughput mapping of protein interaction networks and functional proteomics.  相似文献   

3.
Zhang A  Gonzalez SM  Cantor EJ  Chong S 《Gene》2001,275(2):241-252
Affinity purification of recombinant proteins has been facilitated by fusion to a modified protein splicing element (intein). The fusion protein expression can be further improved by fusion to a mini-intein, i.e. an intein that lacks an endonuclease domain. We synthesized three mini-inteins using overlapping oligonucleotides to incorporate Escherichia coli optimized codons and allow convenient insertion of an affinity tag between the intein (predicted) N- and C-terminal fragments. After examining the splicing and cleavage activities of the synthesized mini-inteins, we chose the mini-intein most efficient in thiol-induced N-terminal cleavage for constructing a novel intein fusion system. In this system, green fluorescent protein (GFP) was fused to the C-terminus of the affinity-tagged mini-intein whose N-terminus was fused to a target protein. The design of the system allowed easy monitoring of soluble fusion protein expression by following GFP fluorescence, and rapid purification of the target protein through the intein-mediated cleavage reaction. A total of 17 target proteins were tested in this intein-GFP fusion system. Our data demonstrated that the fluorescence of the induced cells could be used to measure soluble expression of the intein fusion proteins and efficient intein cleavage activity. The final yield of the target proteins exhibited a linear relationship with whole cell fluorescence. The intein-GFP system may provide a simple route for monitoring real time soluble protein expression, predicting final product yields, and screening the expression of a large number of recombinant proteins for rapid purification in high throughput applications.  相似文献   

4.
One of the first key steps in structural genomics is high-throughput expression and rapid screening to select highly soluble proteins, the preferred candidates for crystal production. Here we describe the methodology used at the Berkeley Structural Genomics Center (BSGC) for automated parallel expression and small-scale purification of fusion proteins using a 96-well format. Our robotic method includes cell lysis, soluble fraction separation and purification with affinity resins. For detection of His-tagged proteins in the soluble fractions and after affinity resin elution, a dot-blot procedure with an anti-His-antibody is used. The expression level and molecular mass of recombinant proteins are checked by SDS-PAGE. With this approach, we are able to obtain beneficial information to be used for large-scale protein expression and purification.  相似文献   

5.
Morphologic studies have shown that the classic endocytosis tracer horseradish peroxidase (HRP) is actively internalized by vesicular transport in the carp intestine, suggesting the existence of specific binding sites in the apical membrane of enterocytes. The aim of the present study was to develop an in vitro binding assay using isolated carp intestinal brush-border membranes (BBM) to demonstrate and characterize these specific HRP binding sites. The results obtained show that HRP binding to BBM exhibits a saturable mode and high affinity (K(d) = 22 nM). In addition, HRP binding sites are highly enriched in BBM compared to basolateral membranes. On the other hand, HRP interaction with these sites is apparently of an ionic character because binding increased concomitantly with decreasing NaCl concentrations in the assay, reaching a maximum in the absence of NaCl. Other proteins that are also internalized in carp intestine did not significantly inhibit HRP binding to BBM. A lectin-type of interaction was discarded because neither manan nor ovoalbumin inhibited HRP binding. Proteinase K treatment of BBM reduced HRP binding by 70%, suggesting a proteic nature for this binding site. Finally, ligand blotting assays showed that HRP binds specifically to a 15.3-kDa protein. Taken together, these results are consistent with the existence of a functional receptor for HRP in carp intestinal mucosa that could mediate its internalization.  相似文献   

6.
One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged "bait" proteins from a medium copy-number plasmid. This construct is based on a broad-host-range vector backbone (pBBR1MCS5). The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of fusion proteins bearing a variety of affinity, fluorescent, or other tags. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results compared favorably with those for both plasmid and chromosomally encoded affinity-tagged fusion proteins expressed in a model organism, Escherichia coli.  相似文献   

7.
Silkworms are useful bioreactors for heterologous protein expression when used in conjunction with the Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system. However, purification from silkworm hemolymph is difficult since it contains various kinds of proteins. In this study, we investigated an effective single-step method for the purification of affinity-tagged single-chain antibody variable region fragment (scFv) from silkworm larval hemolymph. A 5-fold higher expression level was obtained when scFv was fused with the His tag than when it was fused with the Strep II or GST tags. However, the His tag was inadequate for single-step purification since it led to the nonspecific binding of contaminants. The purification recoveries of GST-, Strep II-, and His-tagged scFvs were 91.8%, 43.7%, and 27.2%, respectively. The specific amount of single-step purified GST-tagged scFv was 2.2∼2.7 fold higher than the amounts of the His- and Strep II-tagged constructs. The purities of Strep II- and GST-tagged scFvs in the eluent were 98.4% and 83.0%, respectively. Thus, both the short peptide Strep II and GST protein are suitable fusion tags for the affinity purification of proteins from silkworm larvae.  相似文献   

8.
Two angiostatic fusion proteins (hAE and hEA) of human angiostatin (hAS) and endostatin (hES) proteins differed in tandem connection manner were constructed and evaluated for synergistic anti-angiogenic effects. The 65 kDa secreted fusion proteins from Pichia pastoris expression were verified by mass-spec analysis and western blotting assay. Luciferase reporter gene assay using VEGF promoter revealed that angiostatin-endostatin fusion protein (hAE) and its corresponding fusion gene delivery on Human Microvascular Endothelial Cells (HMEC-1) resulted in more potent synergistic anti-angiogenic effects than endostatin-angiostatin fusion protein (hEA). These facts suggest that the orientation of fusion genes between hAS and hES might be an important factor for developing therapeutic proteins.  相似文献   

9.
Preparation of recombinant RNase single-chain antibody fusion proteins   总被引:4,自引:0,他引:4  
This article describes the construction, expression, and purification of RNase single-chain antibody fusion proteins. To construct a fusion protein, the gene for each moiety, the RNase and the binding ligand, is modified separately to contain complementary DNA encoding a 13 amino acid spacer that separates the RNase from the binding moiety. Appropriate restriction enzyme sites for cloning into the vector are also added. The modified DNA is combined and fused using the PCR technique of splicing by overlap extension (1). The resulting DNA construct is expressed in inclusion bodies in BL21(DE3) bacteria that are specifically engineered for the expression of toxic proteins (2). After isolation and purification of the inclusion bodies, the fusion protein is solubilized, denatured, and renatured. The renatured RNase fusion protein mixture is purified to homogeneity by two chromatography steps. The first column, a CM-Sephadex C-50 or a heparin Sepharose column, eliminates the majority of contaminating proteins while the second column, an affinity column (Ni2+-NTA agarose), results in the final purification of the RNase fusion protein.  相似文献   

10.
The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.  相似文献   

11.
重组人BMP-2在烟草不同组织中的表达   总被引:1,自引:0,他引:1  
骨形态发生蛋白(BMPs)是一类调节骨组织发育的生长因子。BMP-2是BMP家族中诱骨活性最强的。在骨组织工程研究和临床应用中需要大量的BMP-2。因此,研究出一种能够有效地大量生产BMP-2的方法是十分必要的。随着植物分子生物学的进展,转基因植物被用作一种生物反应器来生产目的蛋白。以gus作为报告基因,研究了重组人bmp-2基因在烟草中的表达。通过GUS活性检测、半定量PCR和Western blotting分析了根、茎、叶组织中基因表达的水平,结果显示融合蛋白在根和茎组织中表达量显著高于叶组织。由于根和茎组织中蛋白组成与叶组织相比相对简单,提示其更易于进行目的蛋白的纯化。  相似文献   

12.
Methods have been developed aimed at applying at high-throughput technology for expression of cloned cDNAs in yeast. Yeast is a eukaryotic host, which produces soluble recombinant proteins and is capable of introducing post-translational modifications of protein. It is, thus, an appropriate expression system both for the routine expression of various cDNAs or protein domains and for the expression of proteins, which are not correctly expressed in Escherichia coli. Here, we describe a standard system in Saccharomyces cerevisiae, based on a vector for intracellular protein expression, where the gene products are fused to specific peptide sequences (tags). These epitope tags, the N-terminal His(6) tag and the C-terminal StrepII tag, allow subsequent immunological identification and purification of the gene products by a two-step affinity chromatography. This method of dual-tagged recombinant protein purification eliminates contamination by degraded protein products. A miniaturization of the procedures for cloning, expression, and detection was performed to allow all steps to be carried out in 96-well microtiter plates. The system is, thus, suitable for automation. We were able to analyze the simultaneous protein expression of a large number of cDNA clones due to the highly parallel approach of protein production and purification. The microtiter plate technology format was extended to quantitative analysis. An ELISA-based assay was developed that detects StrepII-tagged proteins. The application of this high-throughput expression system for protein production will be a useful tool for functional and structural analyses of novel genes, identified by the Human Genome Project and other large-scale sequencing projects.  相似文献   

13.
Thermally responsive elastin like polypeptides (ELPs) can be used to purify proteins from Escherichia coli culture when proteins are expressed as a fusion with an ELP. Nonchromatographic purification of ELP fusion proteins, termed inverse transition cycling (ITC), exploits the reversible soluble-insoluble phase transition behavior imparted by the ELP tag. Here, we quantitatively compare the expression and purification of ELP and oligohistidine fusions of chloramphenicol acetyltransferase (CAT), blue fluorescent protein (BFP), thioredoxin (Trx), and calmodulin (CalM) from both a 4-h culture with chemical induction of the plasmid-borne fusion protein gene and a 24-h culture without chemical induction. The total protein content and functional activity were quantified at each ITC purification step. For CAT, BFP, and Trx, the 24-h noninduction culture of ELP fusion proteins results in a sevenfold increase in the yield of each fusion protein compared to that obtained by the 4-h-induced culture, and the calculated target protein yield is similar to that of their equivalent oligohistidine fusion. For these proteins, ITC purification of fusion proteins also results in approximately 75% recovery of active fusion protein, similar to affinity chromatography. Compared to chromatographic purification, however, ITC is inexpensive, requires no specialized equipment or reagents, and because ITC is a batch purification process, it is easily scaled up to accommodate larger culture volumes or scaled down and multiplexed for high-throughput, microscale purification; thus, potentially impacting both high-throughput protein expression and purification for proteomics and large scale, cost-effective industrial bioprocessing of pharmaceutically relevant proteins.  相似文献   

14.
Kwon SY  Choi YJ  Kang TH  Lee KH  Cha SS  Kim GH  Lee HS  Kim KT  Kim KJ 《Plasmid》2005,53(3):274-282
Recently developed bacterial hemoglobin (VHb) fusion expression vector has been widely used for the production of many target proteins due to its distinctive properties of expressing fusion protein with red color which facilitates visualization of the steps in purification, and increasing solubility of the target proteins. However, after intensive use of the vector, several defects have been found. In this report, we present a modified VHb fusion vector (pPosKJ) with higher efficiency, in which most of the defects were eliminated. First, it was found that thrombin protease often digests target protein as well as inserted thrombin cleavage site, so it was replaced by a TEV cleavage site for more specific cleavage of VHb from target protein. Second, a glycine-rich linker sequence was inserted between 6x his-tag and VHb to improve the affinity of 6x his-tag to Ni-NTA resin, resulting in higher purity of eluted fusion protein. Third, EcoRI and XhoI restriction sites located elsewhere in the vector were removed to make these restriction sites available for the cloning of target protein coding genes. A pPosKJ vector was fully examined with an anti-apoptotic BCL-2 family member of Caenorhabditis elegans, CED-9. A C-terminal VHb fusion expression vector (pPosKJC) was also constructed for stable expression of target proteins that may be difficult to express with an N-terminal fusion. Vaccinia-related kinase 1 (VRK1) was also successfully expressed and purified using the vector with high yield. Taken together, we suggest that the VHb fusion vector may be well suited for high-throughput protein expression and purification.  相似文献   

15.
We describe a method for high-throughput, parallel purification of secreted proteins to analyse large numbers of protein samples in cell-based assays for the discovery of protein therapeutics. The procedure is generic and capable of 96 parallel purifications and compatible, in both yield and purity, with a wide assay range. By optimising expression and purification steps as well as using novel hardware, in particular a chromatography press capable to purify target proteins from viscous media, we exemplify the process for the generation of single-chain Fv antibody fragments (scFv) and the purification of full-length IgG. The described process can operate robustly with a throughput of over 2,000 samples per month.  相似文献   

16.
A human cDNA library for high-throughput protein expression screening   总被引:10,自引:0,他引:10  
We have constructed a human fetal brain cDNA library in an Escherichia coli expression vector for high-throughput screening of recombinant human proteins. Using robot technology, the library was arrayed in microtiter plates and gridded onto high-density filter membranes. Putative expression clones were detected on the filters using an antibody against the N-terminal sequence RGS-His(6) of fusion proteins. Positive clones were rearrayed into a new sublibrary, and 96 randomly chosen clones were analyzed. Expression products were analyzed by SDS-PAGE, affinity purification, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, and the determined protein masses were compared to masses predicted from DNA sequencing data. It was found that 66% of these clones contained inserts in a correct reading frame. Sixty-four percent of the correct reading frame clones comprised the complete coding sequence of a human protein. High-throughput microtiter plate methods were developed for protein expression, extraction, purification, and mass spectrometric analyses. An enzyme assay for glyceraldehyde-3-phosphate dehydrogenase activity in native extracts was adapted to the microtiter plate format. Our data indicate that high-throughput screening of an arrayed protein expression library is an economical way of generating large numbers of clones producing recombinant human proteins for structural and functional analyses.  相似文献   

17.
With demand increasing for the production of many different proteins for biophysical or biochemical analyses, rapid methods are needed for the cloning, expression and purification of native recombinant proteins. In particular, generic methods are required that are independent of the target gene sequence. To address this challenge we have constructed four Escherichia coli expression vectors that can be used for ligation independent cloning (LIC) of an amplified target gene sequence. These vectors represent the combinatorial pairing of two different parent vector backbones with two different affinity tags. The target gene is cloned downstream of the sequence coding for an affinity-tagged small ubiquitin related modifier (SUMO). Using enhanced green fluorescent protein (eGFP) as an example we demonstrate that the LIC procedure works with high efficiency for all four of the vectors. We also show that the resultant recombinant SUMO fusion proteins can be overexpressed in E. coli and readily isolated by standard affinity purification techniques. Importantly, the purified fusion product can be treated with recombinant SUMO hydrolase to yield a mature target protein with any residue except proline at the amino terminus. We demonstrate an application of this by generating recombinant eGFP containing a non-native amino terminal cysteine residue and using it as a substrate for expressed protein ligation (EPL). The reagents and techniques described here represent a generic method for the rapid cloning and production of a target protein, and would be appropriate for a high throughput genomic scale expression project.  相似文献   

18.
Plants have attracted increasing attention as an expression platform for the production of pharmaceutical proteins due to its unlimited scalability and low cost potential. However, compared to other expression systems, plants accumulate relatively low levels of foreign proteins, thus necessitating the development of efficient systems for purification of foreign proteins from plant tissues. We have developed a novel strategy for purification of recombinant proteins expressed in plants, based on genetic fusion to soybean agglutinin (SBA), a homotetrameric lectin that binds to N-acetyl-D-galactosamine. Previously it was shown that high purity SBA could be recovered from soybean with an efficiency of greater than 90% following one-step purification using N-acetyl-D-galactosamine-agar columns. We constructed an SBA fusion protein containing the reporter green fluorescent protein (GFP) and transiently expressed it in N. benthamiana plants. We achieved over 2.5% of TSP accumulation in leaves of N. benthamiana. Confocal microscopic analysis demonstrated in vivo activity of the fused GFP partner. Importantly, high purity rSBA-GFP was recovered from crude leaf extract with ~90% yield via one-step purification on N-acetyl-D-galactosamine-agar columns, and the purified fusion protein was able to induce the agglutination of rabbit red blood cells. Combined with this, tetrameric assembly of the fusion protein was demonstrated via western blotting. In addition, rSBA-GFP retained its GFP signal on agglutinated red blood cells, demonstrating the feasibility of using rSBA-GFP for discrimination of cells that bear the ligand glycan on their surface. This work validates SBA as an effective affinity tag for simple and rapid purification of genetically fused proteins.  相似文献   

19.
将口蹄疫病毒 (FMDV)结构蛋白基因P1的完整cDNA序列插入原核表达性载体pGEX KG中 ,使P1基因与GST融合 ,获得融合表达质粒pKG P1,转化E .coliBL21 (DE3) ,经IPTG诱导 ,SDS PADE结果表明GST P1融合蛋白获得高效表达 ,Western blot检测证实表达的融合蛋白具有免疫学活性 ,表达产物主要存在于细菌裂解液上清中。进一步采用GST纯化试剂盒纯化P1蛋白并作为诊断抗原 ,建立了P1 ELISA诊断方法 ,与FMD间接血凝 (IHA)检测方法平行检测 86 4份血清样品 ,总的符合率达87%。  相似文献   

20.
Liu B  Qin Y  Wang J  Wang Y 《Analytical biochemistry》2011,412(1):111-113
We describe a procedure for detection and comparison of protein–DNA interactions using DNA–BIND plate and horseradish peroxidase (HRP)-based colorimetric assay. Amino-modified oligonucleotide was covalently immobilized on the surface of DNA–BIND plate. After the complementary oligonucleotide was annealed, the plate was incubated with protein to allow sequence-specific DNA binding. Primary antibody and HRP-labeled secondary antibody were then employed, and colorimetric assay was conducted before the absorbance was read. This is a sensitive, specific, and high-throughput method that has been applied not only in the detection of protein–DNA interaction but also in the quantitative comparison of DNA-binding capabilities among wild-type and mutant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号