首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many cancer drugs are intended to kill cancer cells by inducing apoptosis. However, the potency assays used for measuring the bioactivity of these products are generally cell viability assays which do not distinguish between cell death and growth inhibition. Here we describe a cell-based fluorescence resonance energy transfer (FRET) biosensor designed to measure the bioactivity of apoptosis inducing cancer drugs. The biosensor contains cyan fluorescent protein (CFP) linked via caspase 3 and caspase 8 specific cleavage recognition sequences to yellow fluorescent protein (YFP). Upon caspase activation, as in the case of apoptosis induction, the linker is cleaved abolishing the cellular FRET signal. This assay closely reflects the mechanism of action of cancer drugs, in killing cancer cells and therefore can function as a potency test for different cancer drugs. We rigorously demonstrate this through characterization of a class of proteins targeting the death receptors. The one-step assay appears to be superior to other apoptosis-based assays because of its simplicity, convenience, and robustness.  相似文献   

2.
Deubiquitinating enzymes (DUBs) proteolytically cleave ubiquitin from ubiquitinated proteins, and inhibition of DUBs that rescue oncogenic proteins from proteasomal degradation is of emerging therapeutic interest. Recently, USP2 and UCH37 have been shown to deubiquitinate tumor-growth-promoting proteins, and other DUBs have been shown to be overexpressed in cancer cells. Therefore inhibition of DUBs is of interest as a potential therapeutic strategy for treating cancer. DUBs require the presence of properly folded ubiquitin protein in the substrate for efficient proteolysis, which precludes the use of synthetic peptide substrates in DUB activity assays. Because of the requirement for full-length ubiquitin, substrates suitable for use in fluorescent assays to identify or study DUB inhibitors have been difficult to prepare. We describe the development of a time-resolved fluorescence resonance energy transfer (FRET)-based DUB substrate that incorporates full-length ubiquitin that is site-specifically labeled using genetically encoded yellow fluorescent protein (YFP) and a chemically attached terbium donor. The intact substrate shows a high degree of FRET between terbium and YFP, whereas DUB-dependent cleavage leads to a decrease in FRET.  相似文献   

3.
Reversible posttranslational modifications of proteins with ubiquitin or ubiquitin-like proteins (Ubls) are widely used to dynamically regulate protein activity and have diverse roles in many biological processes. For example, SUMO covalently modifies a large number or proteins with important roles in many cellular processes, including cell-cycle regulation, cell survival and death, DNA damage response, and stress response 1-5. SENP, as SUMO-specific protease, functions as an endopeptidase in the maturation of SUMO precursors or as an isopeptidase to remove SUMO from its target proteins and refresh the SUMOylation cycle 1,3,6,7.The catalytic efficiency or specificity of an enzyme is best characterized by the ratio of the kinetic constants, kcat/KM. In several studies, the kinetic parameters of SUMO-SENP pairs have been determined by various methods, including polyacrylamide gel-based western-blot, radioactive-labeled substrate, fluorescent compound or protein labeled substrate 8-13. However, the polyacrylamide-gel-based techniques, which used the "native" proteins but are laborious and technically demanding, that do not readily lend themselves to detailed quantitative analysis. The obtained kcat/KM from studies using tetrapeptides or proteins with an ACC (7-amino-4-carbamoylmetylcoumarin) or AMC (7-amino-4-methylcoumarin) fluorophore were either up to two orders of magnitude lower than the natural substrates or cannot clearly differentiate the iso- and endopeptidase activities of SENPs.Recently, FRET-based protease assays were used to study the deubiquitinating enzymes (DUBs) or SENPs with the FRET pair of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) 9,10,14,15. The ratio of acceptor emission to donor emission was used as the quantitative parameter for FRET signal monitor for protease activity determination. However, this method ignored signal cross-contaminations at the acceptor and donor emission wavelengths by acceptor and donor self-fluorescence and thus was not accurate.We developed a novel highly sensitive and quantitative FRET-based protease assay for determining the kinetic parameters of pre-SUMO1 maturation by SENP1. An engineered FRET pair CyPet and YPet with significantly improved FRET efficiency and fluorescence quantum yield, were used to generate the CyPet-(pre-SUMO1)-YPet substrate 16. We differentiated and quantified absolute fluorescence signals contributed by the donor and acceptor and FRET at the acceptor and emission wavelengths, respectively. The value of kcat/KM was obtained as (3.2 ± 0.55) x107 M-1s-1 of SENP1 toward pre-SUMO1, which is in agreement with general enzymatic kinetic parameters. Therefore, this methodology is valid and can be used as a general approach to characterize other proteases as well.  相似文献   

4.
F?rster resonance energy transfer (FRET) technology has been used to develop genetically encoded fluorescent indicators for a variety of intracellular molecular events. Often, however, the poor dynamic range of such reporters prevents detection of subtle but physiologically relevant signals. Here we present a strategy for improving FRET efficiency between donor and acceptor fluorophores in a green fluorescent protein (GFP)-based protein indicator for cAMP. Such indicator is based on protein kinase A (PKA) and was generated by fusion of CFP and YFP to the regulatory and catalytic subunits of PKA, respectively. Our approach to improve FRET efficiency was to perform molecular dynamic simulations and modelling studies of the linker peptide (L11) joining the CFP moiety and the regulatory subunit in order to define its structure and use this information to design an improved linker. We found that L11 contains the X-Y-P-Y-D motif, which adopts a turn-like conformation that is stiffly conserved along the simulation time. Based on this finding, we designed a new linker, L22 in which the YPY motif was doubled in order to generate a stiffer peptide and reduce the mobility of the chromophore within the protein complex, thus favouring CFP/YFP dipole-dipole interaction and improving FRET efficiency. Molecular dynamic simulations of L22 showed, unexpectedly, that the conformational behaviour of L22 was very loose. Based on the analysis of the three principal conformational states visited by L22 during the simulation time, we modified its sequence in order to increase its rigidity. The resulting linker L20 displayed lower flexibility and higher helical content than L22. When inserted in the cAMP indicator, L20 yielded a probe showing almost doubled FRET efficiency and a substantially improved dynamic range.  相似文献   

5.
BACKGROUND: The combination of fluorescence resonance energy transfer (FRET) and flow cytometry offers a statistically firm approach to study protein associations. Fusing green fluorescent protein (GFP) to a studied protein usually does not disturb the normal function of a protein, but quantitation of FRET efficiency calculated between GFP derivatives poses a problem in flow cytometry. METHODS: We generated chimeras in which cyan fluorescent protein (CFP) was separated by amino acid linkers of different sizes from yellow fluorescent protein (YFP) and used them to calibrate the cell-by-cell flow cytometric FRET measurements carried out on two different dual-laser flow cytometers. Then, CFP-Kip1 was coexpressed in yeast cells with YFP and cyclin-dependent kinase-2 (Cdk2) and served as a positive control for FRET measurements, and CFP-Kip1 coexpressed with a random peptide fused to YFP was the negative control. RESULTS: We measured donor, direct, and sensitized acceptor fluorescence intensities and developed a novel way to calculate a factor (alpha) that characterized the fluorescence intensity of acceptor molecules relative to the same number of excited donor molecules, which is essential for quantifying FRET efficiency. This was achieved by calculating FRET efficiency in two different ways and minimizing the squared difference between the two results by changing alpha. Our method reliably detected the association of Cdk2 with its inhibitor, Kip1, whereas the nonspecific FRET efficiency between Cdk2 and a random peptide was negligible. We identified and sorted subpopulations of yeast cells showing interaction between the studied proteins. CONCLUSIONS: We have described a straightforward novel calibration method to accurately quantitate FRET efficiency between GFP derivatives in flow cytometry.  相似文献   

6.
7.
Activation of caspase-3 is a central event in apoptosis. We have developed a GFP-based FRET (fluorescence resonance energy transfer) probe that is highly sensitive to the activation of caspase-3 in intact living cells. This probe was constructed by fusing a CFP (cyan fluorescent protein) and a YFP (yellow fluorescent protein) with a specialized linker containing the caspase-3 cleavage sequence: DEVD. The linker design was optimized to produce a large FRET effect. Using purified protein, we observed a fivefold change in the fluorescence emission ratio when the probe was cleaved by caspase-3. To demonstrate the usefulness of this method, we introduced this FRET probe into HeLa cells by both transient and stable transfection. We observed that during UV-induced apoptosis, the activation of caspase-3 varied significantly between different cells; but once the caspase was activated, the enzyme within the cell became fully active within a few minutes. This technique will be highly useful for correlating the caspase-3 activation with other apoptotic events and for rapid-screening of potential drugs that may target the apoptotic process.  相似文献   

8.
Fluorescence resonance energy transfer between mutant green fluorescent proteins provides powerful means to monitor in vivo protein-protein proximity and intracellular signaling. However, the current widely applied FRET pair of this class (CFP/YFP) requires excitation by expensive UV lasers, thereby hindering FRET imaging on many confocal microscopes. Further challenges arise from the large spectral overlap of CFP/YFP emission. Another FRET pair GFP/DsRed could obviate such limitations. However, the use of DsRed as a FRET acceptor is hampered by several critical problems, including a slow and incomplete maturation and obligate tetramerization. A tandem dimer mutant of DsRed (TDimer2) has similar spectral properties as those of DsRed. The rapid maturation and non-oligomerization make TDimer2 a promising substitute for DsRed in FRET experiments. Here, we have explored the possibility of using TDimer2 as a FRET acceptor for the donor EGFP. FRET was demonstrated between the EGFP-TDimer2 chimeric fusion protein. By substituting CFP/YFP in the Ca2+-sensor cameleon with EGFP/TDimer2, dynamic changes in cytosolic free Ca2+ concentrations were observed with 488nm excitation under conventional wide-field microscopy. The EGFP/TDimer2 pair was further successfully employed to monitor inter-molecular interaction between Syntaxin and SNAP25. These results reveal EGFP/TDimer2 as a promising FRET pair in monitoring intra-molecular conformation change as well as inter-molecular interaction.  相似文献   

9.
In this study, a representative FRET system (CFP donor and YFP acceptor) is compared with the BRET(2) system (Renilla luciferase donor, green fluorescent protein(2) (GFP(2)) acceptor and coelenterazine 400a substrate). Cleavage of a thrombin-protease-sensitive peptide sequence inserted between the donor and acceptor proteins was detected by the RET signal. Complete cleavage by thrombin changed the BRET(2) signal by a factor of 28.9+/-0.2 (R.S.D. (relative standard deviation), n=3) and the FRET signal by a factor of 3.2+/-0.1 (R.S.D., n=3). The BRET(2) technique was 50 times more sensitive than the FRET technique for monitoring thrombin concentrations. Detection limits (blank signal+3sigma(b), where sigma(b)=the standard deviation (S.D.) of the blank signal) were calculated to be 3.05 and 0.22nM thrombin for FRET and BRET(2), respectively. This direct comparison suggests that the BRET(2) technique is more suitable than FRET for use in proximity assays such as protease cleavage assays or protein-protein interaction assays.  相似文献   

10.
Fluorescence resonance energy transfer (FRET) from cyan to yellow fluorescent proteins (CFP/YFP) is a well-established method to monitor protein-protein interactions or conformational changes of individual proteins. But protein functions can be perturbed by fusion of large tags such as CFP and YFP. Here we use G protein-coupled receptor (GPCR) activation in living cells as a model system to compare YFP with the small, membrane-permeant fluorescein derivative with two arsen-(III) substituents (fluorescein arsenical hairpin binder; FlAsH) targeted to a short tetracysteine sequence. Insertion of CFP and YFP into human adenosine A(2A) receptors allowed us to use FRET to monitor receptor activation but eliminated coupling to adenylyl cyclase. The CFP/FlAsH-tetracysteine system gave fivefold greater agonist-induced FRET signals, similar kinetics (time constant of 66-88 ms) and perfectly normal downstream signaling. Similar results were obtained for the mouse alpha(2A)-adrenergic receptor. Thus, FRET from CFP to FlAsH reports GPCR activation in living cells without disturbing receptor function and shows that the small size of the tetracysteine-biarsenical tag can be decisively advantageous.  相似文献   

11.
Pippi (phosphatidyl inositol phosphate indicator) is a biosensor based on the principle of FRET (F?rster resonance energy transfer), which consists of a pair of fluorescent proteins, CFP (cyan fluorescent protein) and YFP (yellow fluorescent protein), the PH domain sandwiched between them, and K-Ras C-terminal sequence for plasma membrane localization. Due to marked cross-excitation of YFP with the conditions used to excite CFP, initial FRET images obtained by TPE (two-photon excitation) microscopy suffered from low signal-to-noise ratio, hampering the observation of lipids in three-dimensional structures. To solve this problem, YFP and CFP in the original Pippi-PI(3,4)P(2) was replaced by sREACh (super resonance energy accepting chromoprotein) and mTFP1 (monomeric teal fluorescent protein), respectively. The biosensor was also fused with an internal control protein, mKeima, where Keima/mTFP1 indicates the FRET efficiency, and indeed epidermal growth factor stimulation increased Keima/mTFP1 in HeLa cells. This biosensor successfully showed PI(3,4)P(2) accumulation to the lateral membrane in the MDCK cyst cultured in a three-dimensional environment. Furthermore, other FRET-based biosensors for PIP(3) distribution and for tyrosine kinase activity were developed based on this method, suggesting its broad application for visualizing signal transduction events with TPE microscopy.  相似文献   

12.
Pippi (phosphatidyl inositol phosphate indicator) is a biosensor based on the principle of FRET (Förster resonance energy transfer), which consists of a pair of fluorescent proteins, CFP (cyan fluorescent protein) and YFP (yellow fluorescent protein), the PH domain sandwiched between them, and K-Ras C-terminal sequence for plasma membrane localization. Due to marked cross-excitation of YFP with the conditions used to excite CFP, initial FRET images obtained by TPE (two-photon excitation) microscopy suffered from low signal-to-noise ratio, hampering the observation of lipids in three-dimensional structures. To solve this problem, YFP and CFP in the original Pippi-PI(3,4)P2 was replaced by sREACh (super resonance energy accepting chromoprotein) and mTFP1 (monomeric teal fluorescent protein), respectively. The biosensor was also fused with an internal control protein, mKeima, where Keima/mTFP1 indicates the FRET efficiency, and indeed epidermal growth factor stimulation increased Keima/mTFP1 in HeLa cells. This biosensor successfully showed PI(3,4)P2 accumulation to the lateral membrane in the MDCK cyst cultured in a three-dimensional environment. Furthermore, other FRET-based biosensors for PIP3 distribution and for tyrosine kinase activity were developed based on this method, suggesting its broad application for visualizing signal transduction events with TPE microscopy.  相似文献   

13.
BACKGROUND: Fluorescence resonance energy transfer (FRET) is a powerful technique for measuring molecular interactions at Angstrom distances. We present a new method for FRET that utilizes the unique spectral properties of variants of the green fluorescent protein (GFP) for large-scale analysis by flow cytometry. METHODS: The proteins of interest are fused in frame separately to the cyan fluorescent protein (CFP) or the yellow fluorescent protein (YFP). FRET between these differentially tagged fusion proteins is analyzed using a dual-laser FACSVantage cytometer. RESULTS: We show that homotypic interactions between individual receptor chains of tumor necrosis factor receptor (TNFR) family members can be detected as FRET from CFP-tagged receptor chains to YFP-tagged receptor chains. Noncovalent molecular complexation can be detected as FRET between fusions of CFP and YFP to either the intracellular or extracellular regions of the receptor chains. The specificity of the assay is demonstrated by the absence of FRET between heterologous receptor pairs that do not biochemically associate with each other. Interaction between a TNFR-like receptor (Fas/CD95/Apo-1) and a downstream cytoplasmic signaling component (FADD) can also be demonstrated by flow cytometric FRET analysis. CONCLUSIONS: The utility of spectral variants of GFP in flow cytometric FRET analysis of membrane receptors is demonstrated. This method of analyzing FRET allows probing of noncovalent molecular interactions that involve both the intracellular and extracellular regions of membrane proteins as well as proteins within the cells. Unlike biochemical methods, FRET allows the quantitative determination of noncovalent molecular associations at Angstrom level in living cells. Moreover, flow cytometry allows quantitative analyses to be carried out on a cell-by-cell basis on large number of cells. Published 2001 Wiley-Liss, Inc.  相似文献   

14.
The monocarboxylate (lactate) transporters MCT1 and MCT4 require the membrane-spanning glycoprotein CD147 for their correct plasma membrane expression and function. We have successfully expressed CD147 and MCT1 tagged on their C or N termini with either the cyan (CFP) or yellow (YFP) variants of green fluorescent protein. The tagged proteins were correctly targeted to the plasma membrane of COS-7 cells and were functionally active. Measurements of fluorescence resonance energy transfer (FRET) between all combinations of the tagged proteins were made. FRET was observed when either the C or N terminus of MCT1 (intracellular) is tagged with CFP or YFP and co-expressed with CD147 tagged with YFP or CFP on the C terminus (intracellular) but not the N terminus (extracellular). FRET was also observed between two CD147 molecules when both YFP and CFP were on the C terminus but not when both were on the N terminus or one on either end. No FRET was observed between MCT1-YFP and MCT-CFP in any combination. A wide range of controls including photobleaching were employed to confirm that where FRET was observed, it was not an artifact of direct excitation of YFP by the CFP excitation laser. It was also shown that nonspecific overcrowding of proteins did not induce FRET. Because FRET only occurs between two fluorophores if they are less than 100 A apart and in a suitable orientation, our data provide important information on the topology of CD147 and MCT1 within the plasma membrane. The minimum configuration consistent with the data is a dimer of CD147 associating with two MCT1 molecules such that the C terminus of CD147 in the cytosol is close to the C terminus of its partner CD147 and to the C and N termini of an associated MCT1 molecule. FRET may provide a non-invasive technique for measuring changes in these interactions in living cells.  相似文献   

15.
Fluorescence resonance energy transfer (FRET) between fluorescent proteins (FPs) is a powerful method to visualize and quantify protein-protein interaction in living cells. Unfortunately, the emission bleed-through of FPs limits the usage of this complex technique. To circumvent undesirable excitation of the acceptor fluorophore, using two-photon excitation, we searched for FRET pairs that show selective excitation of the donor but not of the acceptor fluorescent molecule. We found this property in the fluorescent cyan fluorescent protein (CFP)/yellow fluorescent protein (YFP) and YFP/mCherry FRET pairs and performed two-photon excited FRET spectral imaging to quantify protein interactions on the later pair that shows better spectral discrimination. Applying non-negative matrix factorization to unmix two-photon excited spectral imaging data, we were able to eliminate the donor bleed-through as well as the autofluorescence. As a result, we achieved FRET quantification by means of a single spectral acquisition, making the FRET approach not only easy and straightforward but also less prone to calculation artifacts. As an application of our approach, the intermolecular interaction of amyloid precursor protein and the adaptor protein Fe65 associated with Alzheimer's disease was quantified. We believe that the FRET approach using two-photon and fluorescent YFP/mCherry pair is a promising method to monitor protein interaction in living cells.  相似文献   

16.
Calpain-1 and -2 are Ca2 +-activated intracellular cysteine proteases that regulate a wide range of cellular functions through the cleavage of their protein substrates. Unlike degradative proteases, calpains make limited, transformative cleavages, typically in accessible sequences linking discrete subdomains, to irreversibly alter substrate functions. The biological roles of calpain and their interplay with calcium signaling are of significant biomedical interest as biomarkers and potential therapeutic targets in a growing number of diseases including Alzheimer's, cancer and fibrosis. Unfortunately, many of the colorimetric and fluorimetric assays that have been developed to study calpain activity suffer from low sensitivity and/or poor calpain specificity. To address the need for a highly sensitive and calpain-specific substrate suitable for in vitro and in vivo calpain activity analysis, we have developed a protein FRET probe. We inserted the optimized calpain cleavage sequence PLFAAR between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) and modulated its flanking sequences for optimal calpain cleavage. We demonstrate greater sensitivity and calpain-specificity of an optimal 16-residue PLFAAR-based FRET substrate compared to a standard α-spectrin-based probe. The 16-residue PLFAAR protein FRET substrate is not significantly cleaved by trypsin, chymotrypsin, cathepsin-L or caspase-3, and is highly sensitive to both calpain-1 and -2. After transfection of the substrate gene into breast cancer cells the PLFAAR protein FRET product was cut in lysed wild-type cells but not in those with a calpain knock-out phenotype. Blockage of substrate cleavage in the lysates by endogenous and exogenous calpastatin was observed, and was overcome by adding extra calpain.  相似文献   

17.
Malkani N  Schmid JA 《PloS one》2011,6(4):e18586

Background

The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins.

Methodology/Principal Findings

When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor.

Conclusions/Significance

Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions.  相似文献   

18.
Highly efficient fluorescence resonance energy transfer between cyan(CFP) and yellow fluorescent proteins (YFP), the cyan- and yellow-emitting variants of the Aequorea green fluorescent protein, respectively, was achieved by tightly concatenating the two proteins. After the C-terminus of CFP and the N-terminus of YFP were truncated by 11 and 5 amino acids, respectively, the proteins were fused through a leucine-glutamate dipeptide. The resulting chimeric protein, which we called Cy11.5, exhibited a simple emission spectrum that peaked at 527 nm when the protein was excited at 436 nm. The time-resolved emission of Cy11.5 was measured using a streak camera. After excitation of Cy11.5 with a 400 nm ultrashort pulse, a fast decay of the CFP emission and a concomitant rise of the YFP emission were observed with a lifetime of 66 ps. By contrast, the emission from CFP alone showed a decay component with a lifetime of 2.9 ns. We concluded that in fully folded Cy11.5 molecules, intramolecular FRET occurred with an efficiency of 98%. Importantly, most Cy11.5 molecules were properly folded, and the protein was highly resistant to all of the tested proteases. In living cells, therefore, Cy11.5 behaved as a single fluorescent protein with a broad excitation spectrum. Moreover, Cy11.5 was used as an optical highlighter after photobleaching of YFP. When HeLa cells expressing Cy11.5 were irradiated at 514.5 nm, a 10-fold increase in the 475 nm fluorescence intensity was observed. These features make Cy11.5 useful as an optical highlighter and a new-colored fluorescent protein for multicolor imaging.  相似文献   

19.
Although it is clear that soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complex plays an essential role in synaptic vesicle fusion, the dynamics of SNARE assembly during vesicle fusion remain to be determined. In this report, we employ fluorescence resonance energy transfer technique to study the formation of SNARE complexes. Donor/acceptor pair variants of green fluorescent protein (GFP), cyan fluorescent protein (CFP), and yellow fluorescent protein (YFP) are fused with the N termini of SNAP-25 and synaptobrevin, respectively. In vitro assembly of SNARE core complex in the presence of syntaxin shows strong fluorescence resonance energy transfer (FRET) between the CFP-SNAP-25 and YFP-synaptobrevin. Under the same conditions, CFP fused to the C terminus of SNAP-25, and YFP- synaptobrevin have no FRET. Adenovirus-mediated gene transfer is used to express the fusion proteins in PC12 cells and cultured rat cerebellar granule cells. Strong FRET is associated with neurite membranes and vesicular structures in PC12 cells co-expressing CFP-SNAP-25 and YFP-synaptobrevin. In cultured rat cerebellar granule cells, FRET between CFP-SNAP-25 and YFP-synaptobrevin is mostly associated with sites presumed to be synaptic junctions. Neurosecretion in PC12 cells initiated by KCl depolarization leads to an increase in the extent of FRET. These results demonstrate that significant amounts of stable SNARE complex exist prior to evoked synaptic vesicle fusion and that the assembly of SNARE complex occurs during vesicle docking/priming stage. Moreover, it demonstrates that FRET can be used as an effective tool for investigating dynamic SNARE interactions during synaptic vesicle fusion.  相似文献   

20.
The cardiac sarcolemmal Na+-Ca2+ exchanger (NCX1) influences cardiac contractility by extruding Ca2+ from myocytes. As a Ca2+ efflux mechanism, the exchanger plays a prominent role in Ca2+ homeostasis. To track NCX1 and study changes in conformation, NCX1 was tagged with derivatives of green fluorescent protein. Cyan (CFP) and yellow (YFP) fluorescent proteins were used for both visualization of the protein in HEK cells and fluorescent resonance energy transfer (FRET). CFP or YFP was inserted at position 266, 371, 467, or 548 of the large intracellular loop of NCX1 located between transmembrane segments 5 and 6. These constructs were tested for functional activity and visualized for cell surface expression. All constructs were targeted to the plasma membrane. Transport properties were assessed by both 45Ca2+ uptake and electrophysiological measurements. The fluorescent-tagged exchangers had similar biophysical properties to the wild type NCX1. Unexpectedly, all constructs retain their sensitivity to regulation by cytoplasmic Na+ and Ca2+ ions. FRET analysis indicates the proximity of NCX1 to plasma membrane phosphatidylinositol 4,5-bisphosphate. These results indicate that insertion of CFP or YFP into the large intracellular loop of NCX1 protein does not impair exchanger properties. These constructs will be useful to further characterize the biological properties of the exchanger in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号