首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coastal marine ecosystems of Vietnam are one of the global biodiversity hotspots, but the biodiversity of marine fungi is not well known. To fill this major gap of knowledge, we assessed the genetic diversity (ITS sequence) of 75 fungal strains isolated from 11 surface coastal marine and deeper waters in Nha Trang Bay and Van Phong Bay using a culture-dependent approach and 5 OTUs (Operational Taxonomic Units) of fungi in three representative sampling sites using next-generation sequencing. The results from both approaches shared similar fungal taxonomy to the most abundant phylum (Ascomycota), genera (Candida and Aspergillus) and species (Candida blankii) but were different at less common taxa. Culturable fungal strains in this study belong to 3 phyla, 5 subdivisions, 7 classes, 12 orders, 17 families, 22 genera and at least 40 species, of which 29 species have been identified and several species are likely novel. Among identified species, 12 and 28 are new records in global and Vietnamese marine areas, respectively. The analysis of enzyme activity and the checklist of trophic mode and guild assignment provided valuable additional biological information and suggested the ecological function of planktonic fungi in the marine food web. This is the largest dataset of marine fungal biodiversity on morphology, phylogeny and enzyme activity in the tropical coastal ecosystems of Vietnam and Southeast Asia. Biogeographic aspects, ecological factors and human impact may structure mycoplankton communities in such aquatic habitats.  相似文献   

2.
The microeukaryotic community in Zodletone Spring, a predominantly anaerobic sulfide and sulfur-rich spring, was examined using an 18S rRNA gene cloning and sequencing approach. The majority of the 288 clones sequenced from three different locations at Zodletone Spring belonged to the Stramenopiles, Alveolata, and Fungi, with members of the phylum Cercozoa, order Diplomonadida, and family Jakobidae representing a minor fraction of the clone library. No sequences suggesting the presence of novel kingdom level diversity were detected in any of the three libraries. A large fraction of stramenopile clones encountered were monophyletic with either members of the genus Cafeteria (order Bicosoecida) or members of the order Labyrinthulida (slime nets), both of which have so far been encountered mainly in marine habitats. The majority of the observed fungal clone sequences belonged to the ascomycetous yeasts (order Saccharomycetales), were closely related to yeast genera within the Hymenobasidiomycetes (phylum Basidiomycetes), or formed a novel fungal lineage with several previously published or database-deposited clones. To determine whether the unexpected abundance of fungal sequences in Zodletone Spring clone libraries represents a general pattern in anaerobic habitats, we generated three clone libraries from three different anaerobic settings (anaerobic sewage digester, pond sediment, and hydrocarbon-exposed aquifer sediments) and partially sequenced 210 of these clones. Phylogenetic analysis indicated that clone sequences belonging to the kingdom Fungi represent a significant fraction of all three clone libraries, an observation confirmed by phospholipid fatty acid and ergosterol analysis. Overall, this work reveals an unexpected abundance of Fungi in anaerobic habitats, describes a novel, yet-uncultured group of Fungi that appears to be widespread in anaerobic habitats, and indicates that several of the previously considered marine protists could also occur in nonmarine habitats.  相似文献   

3.
Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal ‘OTU clusters'' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments.  相似文献   

4.
Few studies have addressed the occurrence of fungi in deep-sea sediments, characterized by elevated hydrostatic pressure, low temperature, and fluctuating nutrient conditions. We evaluated the diversity of fungi at three locations of the Central Indian Basin (CIB) at a depth of ~5,000 m using culture-independent approach. Community DNA isolated from these sediments was amplified using universal and fungal-specific internal transcribed spacers and universal 18S rDNA primer pairs. A total of 39 fungal operational taxonomic units, with 32 distinct fungal taxa were recovered from 768 clones generated from 16 environmental clone libraries. The application of multiple primers enabled the recovery of eight sequences that appeared to be new. The majority of the recovered sequences belonged to diverse phylotypes of Ascomycota and Basidiomycota. Our results suggested the existence of cosmopolitan marine fungi in the sediments of CIB. This study further demonstrated that diversity of fungi varied spatially in the CIB. Individual primer set appeared to amplify different fungal taxa occasionally. This is the first report on culture-independent diversity of fungi from the Indian Ocean.  相似文献   

5.
Increasing evidence of the fungal diversity in deep-sea sediments has come from amplification of environmental DNA with fungal specific or eukaryote primer sets. In order to assess the fungal diversity in deep-sea sediments of the Central Indian Basin (CIB) at ~5,000 m depth, we amplified sediment DNA with four different primer sets. These were fungal-specific primer pair ITS1F/ITS4 (internal transcribed spacers), universal 18S rDNA primers NS1/NS2, Euk18S-42F/Euk18S-1492R and Euk18S-555F/Euk18S-1269R. One environmental library was constructed with each of the primer pairs, and 48 clones were sequenced per library. These sequences resulted in 8 fungal Operational Taxonomic Units (OTUs) with ITS and 19 OTUs with 18S rDNA primer sets respectively by taking into account the 2% sequence divergence cut-off for species delineation. These OTUs belonged to 20 distinct fungal genera of the phyla Ascomycota and Basidiomycota. Seven sequences were found to be divergent by 79–97% from the known sequences of the existing database and may be novel. A majority of the sequences clustered with known sequences of the existing taxa. The phylogenetic affiliation of a few fungal sequences with known environmental sequences from marine and hypersaline habitat suggests their autochthonous nature or adaptation to marine habitat. The amplification of sequences belonging to Exobasidiomycetes and Cystobasidiomycetes from deep-sea is being reported for the first time in this study. Amplification of fungal sequences with eukaryotic as well as fungal specific primers indicates that among eukaryotes, fungi appear to be a dominant group in the sampling site of the CIB.  相似文献   

6.
The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi.  相似文献   

7.
Few studies have addressed the diversity of cultivable fungi from marine sediments, especially those from Antarctica. In the present study, we evaluated the presence and distribution of cultivable fungi in marine core sediments obtained from 100, 500, 700 and 1,100 m below the Antarctic Ocean surface. Fifty-two fungal isolates were identified as Penicillium solitum by their physiological and morphological characteristics, and the identity of 12 representative isolates was further confirmed by sequencing of the ITS1-5.8S-ITS2 and β-tubulin genes. P. solitum displayed high sequence similarity to Penicillium taxa that have been described from other marine habitats. Conidial germination of P. solitum occurred at low temperatures and high salinities. In addition, P. solitum displayed extracellular amylasic and esterasic activities. The isolation of P. solitum from marine sediments in Antarctica and its survival at low temperatures and high salt concentrations suggest that it is adapted to the cold and halophilic environment of the Antarctic oceans. Because P. solitum produces extracellular enzymes, it is an interesting eukaryotic model for the study of structure–function relationships during enzymatic biocatalysis and biotransformation under extreme conditions. Marine sediments from Antarctica may represent a unique source for obtaining extremophilic fungi. New studies using different culture media, temperatures ranges and pressure conditions as well as metagenomic techniques can assist in understanding the extremophilic fungal communities in marine sediments across the Antarctic Ocean.  相似文献   

8.
The opisthokonts are one of the major super groups of eukaryotes. It comprises two major clades: (i) the Metazoa and their unicellular relatives and (ii) the Fungi and their unicellular relatives. There is, however, little knowledge of the role of opisthokont microbes in many natural environments, especially among non‐metazoan and non‐fungal opisthokonts. Here, we begin to address this gap by analysing high‐throughput 18S rDNA and 18S rRNA sequencing data from different European coastal sites, sampled at different size fractions and depths. In particular, we analyse the diversity and abundance of choanoflagellates, filastereans, ichthyosporeans, nucleariids, corallochytreans and their related lineages. Our results show the great diversity of choanoflagellates in coastal waters as well as a relevant representation of the ichthyosporeans and the uncultured marine opisthokonts (MAOP). Furthermore, we describe a new lineage of marine fonticulids (MAFO) that appears to be abundant in sediments. Taken together, our work points to a greater potential ecological role for unicellular opisthokonts than previously appreciated in marine environments, both in water column and sediments, and also provides evidence of novel opisthokont phylogenetic lineages. This study highlights the importance of high‐throughput sequencing approaches to unravel the diversity and distribution of both known and novel eukaryotic lineages.  相似文献   

9.
Fungi are the principal degraders of biomass in most terrestrial ecosystems. In contrast to surface environments, deep-sea environmental gene libraries have suggested that fungi are rare and non-diverse in high-pressure marine environments. Here, we report the diversity of fungi from 11 deep-sea samples from around the world representing depths from 1,500 to 4,000 m (146-388 atm) and two shallower water column samples (250 and 500m). We sequenced 239 clones from 10 fungal-specific 18S rRNA gene libraries constructed from these samples, from which we detected only 18 fungal 18S-types in deep-sea samples. Our phylogenetic analyses show that a total of only 32 fungal 18S-types have so far been recovered from deep-sea habitats, and our results suggest that fungi, in general, are relatively rare in the deep-sea habitats we sampled. The fungal diversity detected suggests that deep-sea environments host an evolutionarily diverse array of fungi dominated by groups of distantly related yeasts, although four putative filamentous fungal 18S-types were detected. The majority of our new sequences branch close to known fungi found in surface environments. This pattern contradicts the proposal that deep-sea and hydrothermal vent habitats represent ancient ecosystems, and demonstrates a history of frequent dispersal between terrestrial and deep-sea habitats.  相似文献   

10.
The fungal diversity in deep-sea environments has recently gained an increasing amount attention. Our knowledge and understanding of the true fungal diversity and the role it plays in deep-sea environments, however, is still limited. We investigated the fungal community structure in five sediments from a depth of ∼4000 m in the East India Ocean using a combination of targeted environmental sequencing and traditional cultivation. This approach resulted in the recovery of a total of 45 fungal operational taxonomic units (OTUs) and 20 culturable fungal phylotypes. This finding indicates that there is a great amount of fungal diversity in the deep-sea sediments collected in the East Indian Ocean. Three fungal OTUs and one culturable phylotype demonstrated high divergence (89%–97%) from the existing sequences in the GenBank. Moreover, 44.4% fungal OTUs and 30% culturable fungal phylotypes are new reports for deep-sea sediments. These results suggest that the deep-sea sediments from the East India Ocean can serve as habitats for new fungal communities compared with other deep-sea environments. In addition, different fungal community could be detected when using targeted environmental sequencing compared with traditional cultivation in this study, which suggests that a combination of targeted environmental sequencing and traditional cultivation will generate a more diverse fungal community in deep-sea environments than using either targeted environmental sequencing or traditional cultivation alone. This study is the first to report new insights into the fungal communities in deep-sea sediments from the East Indian Ocean, which increases our knowledge and understanding of the fungal diversity in deep-sea environments.  相似文献   

11.
To search for more microbial resources for screening environment-friendly antifoulants, we investigated the phylogenetic diversity and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. A total of 176 isolates belonging to 57 fungal taxa were recovered and identified. The high levels of diversity and abundance of mangrove fungi from Techeng Isle were in accordance with previous studies on fungi from other mangrove ecosystems. Fifteen of the 176 isolates demonstrated high divergence (87–93%) from the known fungal taxa in GenBank. Moreover, 26 isolates recorded in mangrove ecosystems for the first time. These results suggested that mangrove sediments from Techeng Isle harbored some new fungal communities compared with other mangrove ecosystems. The antifouling activity of 57 representative isolates (belonging to 57 different fungal taxa) was tested against three marine bacteria (Loktanella hongkongensis, Micrococcus luteus and Pseudoalteromonas piscida) and two marine macrofoulers (bryozoan Bugula neritina and barnacle Balanus amphitrite). Approximately 40% of the tested isolates displayed distinct antifouling activity. Furthermore, 17 fungal isolates were found to display strong or a wide spectrum of antifouling activity in this study, suggesting that these isolates deserve further study as potential sources of novel antifouling metabolites. To our knowledge, this is the first report on the investigation of the phylogenetic diversity and antifouling potential of culturable fungi in mangrove sediments from Techeng Isle, China. These results contribute to our knowledge of mangrove fungi and further increases the pool of fungi available for natural bioactive product screening.  相似文献   

12.
The microeukaryotic community in Zodletone Spring, a predominantly anaerobic sulfide and sulfur-rich spring, was examined using an 18S rRNA gene cloning and sequencing approach. The majority of the 288 clones sequenced from three different locations at Zodletone Spring belonged to the Stramenopiles, Alveolata, and Fungi, with members of the phylum Cercozoa, order Diplomonadida, and family Jakobidae representing a minor fraction of the clone library. No sequences suggesting the presence of novel kingdom level diversity were detected in any of the three libraries. A large fraction of stramenopile clones encountered were monophyletic with either members of the genus Cafeteria (order Bicosoecida) or members of the order Labyrinthulida (slime nets), both of which have so far been encountered mainly in marine habitats. The majority of the observed fungal clone sequences belonged to the ascomycetous yeasts (order Saccharomycetales), were closely related to yeast genera within the Hymenobasidiomycetes (phylum Basidiomycetes), or formed a novel fungal lineage with several previously published or database-deposited clones. To determine whether the unexpected abundance of fungal sequences in Zodletone Spring clone libraries represents a general pattern in anaerobic habitats, we generated three clone libraries from three different anaerobic settings (anaerobic sewage digester, pond sediment, and hydrocarbon-exposed aquifer sediments) and partially sequenced 210 of these clones. Phylogenetic analysis indicated that clone sequences belonging to the kingdom Fungi represent a significant fraction of all three clone libraries, an observation confirmed by phospholipid fatty acid and ergosterol analysis. Overall, this work reveals an unexpected abundance of Fungi in anaerobic habitats, describes a novel, yet-uncultured group of Fungi that appears to be widespread in anaerobic habitats, and indicates that several of the previously considered marine protists could also occur in nonmarine habitats.  相似文献   

13.
The diversity and ecological significance of bacteria and archaea in deep-sea environments have been thoroughly investigated, but eukaryotic microorganisms in these areas, such as fungi, are poorly understood. To elucidate fungal diversity in calcareous deep-sea sediments in the Southwest India Ridge (SWIR), the internal transcribed spacer (ITS) regions of rRNA genes from two sediment metagenomic DNA samples were amplified and sequenced using the Illumina sequencing platform. The results revealed that 58–63 % and 36–42 % of the ITS sequences (97 % similarity) belonged to Basidiomycota and Ascomycota, respectively. These findings suggest that Basidiomycota and Ascomycota are the predominant fungal phyla in the two samples. We also found that Agaricomycetes, Leotiomycetes, and Pezizomycetes were the major fungal classes in the two samples. At the species level, Thelephoraceae sp. and Phialocephala fortinii were major fungal species in the two samples. Despite the low relative abundance, unidentified fungal sequences were also observed in the two samples. Furthermore, we found that there were slight differences in fungal diversity between the two sediment samples, although both were collected from the SWIR. Thus, our results demonstrate that calcareous deep-sea sediments in the SWIR harbor diverse fungi, which augment the fungal groups in deep-sea sediments. This is the first report of fungal communities in calcareous deep-sea sediments in the SWIR revealed by Illumina sequencing.  相似文献   

14.
Despite the important role of fungi for ecosystems, relatively little is known about the factors underlying the dynamics of their diversity. Moreover, studies do not typically consider their dark diversity: the species absent from an otherwise suitable site. Here, we examined potential drivers of local fungal dark diversity in temperate woodland and open habitats using LiDAR and in-situ field measurements, combined with a systematically collected and geographically comprehensive macro-fungi and plant data set. For the first time, we also estimated species pools of fungi by considering both plant and fungi co-occurrences. The most important LiDAR variables for explaining fungal dark diversity were amplitude and echo ratio, which represent vegetation structure. These results suggest that the local fungal dark diversity is highest in production forests like plantations and lowest in more open forests and in open habitats with little woody vegetation. Plant species richness was the strongest explanatory factor overall and negatively correlated with local fungal dark diversity. Soil fertility showed a positive relationship with dark diversity in open habitats. These findings indicate that the local dark diversity of macro-fungi is highest in areas with a relatively high human impact (typically areas with low plant species richness and high soil fertility). Overall, this study brings novel insights into local macro-fungi dark diversity patterns, suggesting that a multitude of drivers related to both soil and vegetation act simultaneously to determine fungal dark diversity.  相似文献   

15.
The community composition of marine planktonic cyanobacteria in transitional marine habitats can influence its overall contribution to aquatic primary production. To understand distribution patterns of marine planktonic cyanobacterial assemblages, phylogenetic and statistical analyses were undertaken on planktonic cyanobacterial 16S rRNA gene sequences from four transitional marine habitats [Baltic Sea (BL), Monterey Bay (MB), South China Sea (SCS) and Sundarbans (SB)]. Out of 3255 sequences analyzed, only 546 sequences were found to be planktonic cyanobacteria and were considered in this study. Among these, 338 sequences representative of Sundarbans, the world's largest mangrove were generated based on Sanger and Illumina sequencing approaches. Based on 16S rRNA phylogeny, four major taxonomic orders of marine planktonic cyanobacteria were recovered in varying proportions with several novel 16S rRNA sequences in each of the four targeted sites. Members of the order Synechococcales were dominant in all the sites (?94% sequences) while the orders Chroococcales and Oscillatoriales were only detected in SB and SCS sites, respectively. In the phylogenetic tree, sequences representing the major marine picocyanobacterial genus Synechococcus showed overwhelming dominance in SB and they were found in three other sites. Prochlorococcus ‐like sequences were found in sizeable number in MB and SCS but were absent in SB and coastal BL. Synechococcus ‐like sequences were represented by three major marine clusters (5.1, 5.2, and 5.3). Three novel clades as part of Synechococcus cluster were detected only in SB and one novel clade in BL. The majority of OTUs were found to be exclusive to each site, whereas some were shared by two or more sites as revealed by beta‐diversity analysis.  相似文献   

16.
【背景】除了菌根真菌(Orchid mycorrhizal fungi,OrMF)外,兰科植物根中还有其它内生真菌,称为根相关真菌(Root-associated fungi,RAF)。【目的】采用分离培养的方法获得同一栖息地针叶林和灌木林两种不同生境西藏杓兰、黄花杓兰和无苞杓兰的RAF菌株,研究其真菌谱系、多样性和生态功能结构。【方法】从杓兰根碎屑中分离RAF,通过总DNA提取、PCR扩增及测序得到ITS(Internaltranscribedspacer)序列;进行系统发育和多样性分析,并通过NCBI数据库比对得到相似性最高序列的注释信息来分析RAF生态学特性。【结果】共分离得到278株RAF,25种OTU类型,包括23个子囊菌门OTU,2个毛霉菌门OTU。RAF物种丰富度分析发现西藏杓兰的较黄花杓兰高,不同生境没有显著差异;不同杓兰物种较不同生境的RAF群落分化程度高。生态功能分析显示25个OTU包括共生型、腐生型和致病型3种营养型,以及外生菌根菌群、植物病原菌群、内生真菌群、动物病原菌群、真菌寄生菌群、杜鹃花类菌根群、未定义的腐生菌群和不确定型8种共位群。【结论】阐明不同生境采集的不同杓兰中RAF的分布特点和生态功能,为未来研究RAF与杓兰属植物的共生关系奠定基础。  相似文献   

17.
【目的】了解八门湾红树林生态系统中不同生境(潮间带、海洋到红树区的过渡带、海桑红树区)和不同深度土壤的可培养真菌的多样性。【方法】采用稀释涂布平板法分离土壤中的真菌,利用形态学观察和ITS rDNA序列分析技术研究可培养真菌的表观和遗传多样性。【结果】从八门湾红树林生态系统的3个不同生境中分离到257株真菌,分别属于21属28种,其中青霉属(Penicillium)、曲霉属(Aspergillus)和木霉属(Trichoderma)为优势类群。来自不同生境或者同一生境不同采样深度的土壤真菌种类组成不同,并且有些真菌类群只出现在特定的样品中。从空间角度看,红树区土壤样品的真菌多样性高于其他两个生境的土壤样品;从垂直角度看,潮间带和过渡带的表层土壤样品的真菌多样性高于深层土壤样品,而红树区的深层土壤样品真菌多样性高于表层土壤样品。【结论】八门湾红树林生态系统中的可培养真菌资源丰富,种类多样性较高,但不同生境或不同深度的可培养真菌分布存在较大的差异。这些结果揭示了红树林土壤中可培养真菌的生态分布特点,也为红树林真菌资源的开发利用提供了基础的背景资料。  相似文献   

18.
Our study reports the diversity of culturable mycoplankton in the eastern South Pacific Ocean off Chile to contribute with novel knowledge on taxonomy of filamentous fungi isolated from distinct physicochemical and biological marine environments. We characterized spatial distribution of isolates, evaluated their viability and assessed the influence of organic substrate availability on fungal development. Thirty-nine Operational Taxonomic Units were identified from 99 fungal strains isolated from coastal and oceanic waters by using Automatic Barcode Gap Discovery. All Operational Taxonomic Units belonged to phylum Ascomycota and orders Eurotiales, Dothideales, Sordariales and Hypocreales, mainly Penicillium sp. (82%); 11 sequences did not match existing species in GenBank, suggesting occurrence of novel fungal taxa. Our results suggest that fungal communities in the South Pacific Ocean off Chile appear to thrive in a wide range of environmental conditions in the ocean and that substrate availability may be a factor influencing fungal viability in the ocean.  相似文献   

19.
Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99-100%) and unpublished high-throughput 454 environmental datasets (>95%). BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions.  相似文献   

20.
Even though occurrence of fungi in several marine environments has been documented, their inclusion within the marine microbial loop is not fully recognized. A major constraint is whether fungi in coastal waters are truly marine or represent transient microorganisms transported from terrestrial environments. We approached this issue by analyzing ambient fungal composition and hydrolytic activity of culturable fungi along a nearshore-offshore gradient in the upwelling ecosystem off central Chile, a region of high marine productivity strongly influenced by river discharges. We detected different communities of fungi in nearshore and offshore waters, with near estuary strains hydrolyzing proteins and carbohydrates faster than those from offshore sites. We conclude that coastal waters off central Chile comprise distinct fungal communities representative of offshore and nearshore environments, and provide new evidence for fungi processing organic matter in coastal ecotones, opening a fresh perspective for disappearance of organics carried by rivers in the coastal ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号