首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Molecular phylogenetic analyses have recently shown that the unicellular amoeboid protist Capsaspora owczarzaki is unlikely to be a nucleariid or an ichthyosporean as previously described, but is more closely related to Metazoa, Choanoflagellata, and Ichthyosporea. However, the specific phylogenetic relationship of Capsaspora to other protist opisthokont lineages was poorly resolved. To test these earlier results we have expanded both the taxonomic sampling and the number of genes from opisthokont unicellular lineages. We have sequenced the protein-coding genes elongation factor 1-alpha (EF1-alpha) and heat shock protein 70 (Hsp70) from C. owczarzaki and the ichthyosporean Sphaeroforma arctica. Our maximum likelihood (ML) and Bayesian analyses of a concatenated alignment of EF1-alpha, Hsp70, and actin protein sequences with a better sampling of opisthokont-related protist lineages indicate that C. owczarzaki is not clearly allied with any of the unicellular opisthokonts, but represents an independent unicellular lineage closely related to animals and choanoflagellates. Moreover, we have found that the ichthyosporean S. arctica possesses an EF-like (EFL) gene copy instead of the canonical EF1-alpha, the first so far described in an ichthyosporean. A maximum likelihood phylogenetic analysis shows that the EF-like gene of S. arctica strongly groups with the EF-like genes from choanoflagellates. Finally, to begin characterizing the Capsaspora genome, we have performed pulsed-field gel electrophoresis (PFGE) analyses, which indicate that its genome has at least 12 chromosomes with a total genome size in the range of 22-25 Mb.  相似文献   

2.
Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals.  相似文献   

3.
Although previous studies, mostly based on microscopy analyses of a few groups of protists, have suggested that protists are abundant and diverse in litter and moss habitats, the overall diversity of moss and litter associated protists remains elusive. Here, high‐throughput environmental sequencing was used to characterize the diversity and community structure of litter‐ and moss‐associated protists along a gradient of soil drainage and forest primary productivity in a temperate rainforest in British Columbia. We identified 3262 distinct protist OTUs from 36 sites. Protists were strongly structured along the landscape gradient, with a significant increase in alpha diversity from the blanket bog ecosystem to the zonal forest ecosystem. Among all investigated environmental variables, calcium content was the most strongly associated with the community composition of protists, but substrate composition, plant cover and other edaphic factors were also significantly correlated with these communities. Furthermore, a detailed phylogenetic analysis of unicellular opisthokonts identified OTUs covering most lineages, including novel OTUs branching with Discicristoidea, the sister group of Fungi, and with Filasterea, one of the closest unicellular relatives to animals. Altogether, this study provides unprecedented insight into the community composition of moss‐ and litter‐associated protists.  相似文献   

4.
The evolutionary origin of synapses and neurons is an enigmatic subject that inspires much debate. Non‐bilaterian metazoans, both with and without neurons and their closest relatives already contain many components of the molecular toolkits for synapse functions. The origin of these components and their assembly into ancient synaptic signaling machineries are particularly important in light of recent findings on the phylogeny of non‐bilaterian metazoans. The evolution of synapses and neurons are often discussed only from a metazoan perspective leaving a considerable gap in our understanding. By taking an integrative approach we highlight the need to consider different, but extremely relevant phyla and to include the closest unicellular relatives of metazoans, the ichthyosporeans, filastereans and choanoflagellates, to fully understand the evolutionary origin of synapses and neurons. This approach allows for a detailed understanding of when and how the first pre‐ and postsynaptic signaling machineries evolved.  相似文献   

5.
The protistan origins of animals and fungi   总被引:11,自引:0,他引:11  
Recent molecular studies suggest that Opisthokonta, the eukaryotic supergroup including animals and fungi, should be expanded to include a diverse collection of primitively single-celled eukaryotes previously classified as Protozoa. These taxa include corallochytreans, nucleariids, ministeriids, choanoflagellates, and ichthyosporeans. Assignment of many of these taxa to Opisthokonta remains uncorroborated as it is based solely on small subunit ribosomal RNA trees lacking resolution and significant bootstrap support for critical nodes. Therefore, important details of the phylogenetic relationships of these putative opisthokonts with each other and with animals and fungi remain unclear. We have sequenced elongation factor 1-alpha (EF-1alpha), actin, beta-tubulin, and HSP70, and/or alpha-tubulin from representatives of each of the proposed protistan opisthokont lineages, constituting the first protein-coding gene data for some of them. Our results show that members of all opisthokont protist groups encode a approximately 12-amino acid insertion in EF-1alpha, previously found exclusively in animals and fungi. Phylogenetic analyses of combined multigene data sets including a diverse set of opisthokont and nonopisthokont taxa place all of the proposed opisthokont protists unequivocally in an exclusive clade with animals and fungi. Within this clade, the nucleariid appears as the closest sister taxon to fungi, while the corallochytrean and ichthyosporean form a group which, together with the ministeriid and choanoflagellates, form two to three separate sister lineages to animals. These results further establish Opisthokonta as a bona fide taxonomic group and suggest that any further testing of the legitimacy of this taxon should, at the least, include data from opisthokont protists. Our results also underline the critical position of these "animal-fungal allies" with respect to the origin and early evolution of animals and fungi.  相似文献   

6.
For over a century, Haeckel's Gastraea theory remained a dominant theory to explain the origin of multicellular animals. According to this theory, the animal ancestor was a blastula‐like colony of uniform cells that gradually evolved cell differentiation. Today, however, genes that typically control metazoan development, cell differentiation, cell‐to‐cell adhesion, and cell‐to‐matrix adhesion are found in various unicellular relatives of the Metazoa, which suggests the origin of the genetic programs of cell differentiation and adhesion in the root of the Opisthokonta. Multicellular stages occurring in the complex life cycles of opisthokont protists (mesomycetozoeans and choanoflagellates) never resemble a blastula. Here, we discuss a more realistic scenario of transition to multicellularity through integration of pre‐existing transient cell types into the body of an early metazoon, which possessed a complex life cycle with a differentiated sedentary filter‐feeding trophic stage and a non‐feeding blastula‐like larva, the synzoospore. Choanoflagellates are considered as forms with secondarily simplified life cycles.  相似文献   

7.
Despite nearly a century of study, the diversity of marine fungi remains poorly understood. Historical surveys utilizing microscopy or culture-dependent methods suggest that marine fungi are relatively species-poor, predominantly Dikarya, and localized to coastal habitats. However, the use of high-throughput sequencing technologies to characterize microbial communities has challenged traditional concepts of fungal diversity by revealing novel phylotypes from both terrestrial and aquatic habitats. Here, I used ion semiconductor sequencing (Ion Torrent) of the ribosomal large subunit (LSU/28S) to explore fungal diversity from water and sediment samples collected from four habitats in coastal North Carolina. The dominant taxa observed were Ascomycota and Chytridiomycota, though all fungal phyla were represented. Diversity was highest in sand flats and wetland sediments, though benthic sediments harbored the highest proportion of novel sequences. Most sequences assigned to early-diverging fungal groups could not be assigned beyond phylum with statistical support, suggesting they belong to unknown lineages.  相似文献   

8.
Until recently, it had appeared that the septin family of proteins was restricted to the opisthokont eukaryotes (the fungi and animals and their close relatives the microsporidia and choanoflagellates). It has now become apparent that septins are also present in several other widely divergent eukaryotic lineages (chlorophyte algae, brown algae, and ciliates). This distribution and the details of the non-opisthokont septin sequences appear to require major revisions to hypotheses about the origins and early evolution of the septins.  相似文献   

9.
Fungi are everywhere and interact with humans in countless ways, but a large group of fungi called ‘Cryptomycota’ has escaped detection until very recently. Still, the extent of diversity and ecological habits of this group remain largely unknown. We interrogated publically available 18S rRNA gene datasets, obtained via high‐throughput sequencing from marine and freshwater samples, for Cryptomycota sequences. Contrary to previous work, we found evidence of substantial Cryptomycota diversity in the marine upper water column. Additionally, we produced a sequencing set from a groundwater aquifer, an environment unrepresented among 18S rRNA gene pyrosequencing sets. The Cryptomycota community in this aquifer sample appears distinct from the community in both freshwater and marine environments with evidence of a unique aquifer clade. This study significantly expands the boundary of known Cryptomycota sequence diversity and characterizes the phylogenetic distribution of this diversity in aquatic environments. Furthermore, the approach utilized is generalizable to discovery of novel micro‐eukaryotic diversity from any lineage.  相似文献   

10.
Host‐associated microbes are ubiquitous. Every multicellular eukaryote, and even many unicellular eukaryotes (protists), hosts a diverse community of microbes. High‐throughput sequencing (HTS) tools have illuminated the vast diversity of host‐associated microbes and shown that they have widespread influence on host biology, ecology and evolution (McFall‐Ngai et al. 2013 ). Bacteria receive most of the attention, but protists are also important components of microbial communities associated with humans (Parfrey et al. 2011 ) and other hosts. As HTS tools are increasingly used to study eukaryotes, the presence of numerous and diverse host‐associated eukaryotes is emerging as a common theme across ecosystems. Indeed, HTS studies demonstrate that host‐associated lineages account for between 2 and 12% of overall eukaryotic sequences detected in soil, marine and freshwater data sets, with much higher relative abundances observed in some samples (Ramirez et al. 2014 ; Simon et al. 2015 ; de Vargas et al. 2015 ). Previous studies in soil detected large numbers of predominantly parasitic lineages such as Apicomplexa, but did not delve into their origin [e.g. (Ramirez et al. 2014 )]. In this issue of Molecular Ecology, Geisen et al. ( 2015 ) use mock communities to show that many of the eukaryotic organisms detected by environmental sequencing in soils are potentially associated with animal hosts rather than free‐living. By isolating the host‐associated fraction of soil microbial communities, Geisen and colleagues help explain the surprisingly high diversity of parasitic eukaryotic lineages often detected in soil/terrestrial studies using high‐throughput sequencing (HTS) and reinforce the ubiquity of these host‐associated microbes. It is clear that we can no longer assume that organisms detected in bulk environmental sequencing are free‐living, but instead need to design studies that specifically enumerate the diversity and function of host‐associated eukaryotes. Doing so will allow the field to determine the role host‐associated eukaryotes play in soils and other environments and to evaluate hypotheses on assembly of host‐associated communities, disease ecology and more.  相似文献   

11.
Abstract The primary diversification of eukaryotes involved protozoa, especially zooflagellates—flagellate protozoa without plastids. Understanding the origins of the higher eukaryotic kingdoms (two purely heterotrophic, Animalia and Fungi, and two primarily photosynthetic, Plantae and Chromista) depends on clarifying evolutionary relationships among the phyla of the ancestral kingdom Protozoa. We therefore sequenced 18S rRNA genes from 10 strains from the protozoan phyla Choanozoa and Apusozoa. Eukaryote diversity is encompassed by three early-radiating, arguably monophyletic groups: Amoebozoa, opisthokonts, and bikonts. Our taxon-rich rRNA phylogeny for eukaryotes allowing for intersite rate variation strongly supports the opisthokont clade (animals, Choanozoa, Fungi). It agrees with the view that Choanozoa are sisters of or ancestral to animals and reveals a novel nonflagellate choanozoan lineage, Ministeriida, sister either to choanoflagellates, traditionally considered animal ancestors, or to animals. Maximum likelihood trees suggest that within animals Placozoa are derived from medusozoan Cnidaria (we therefore place Placozoa as a class within subphylum Medusozoa of the Cnidaria) and hexactinellid sponges evolved from demosponges. The bikont and amoebozoan radiations are both very ill resolved. Bikonts comprise the kingdoms Plantae and Chromista and three major protozoan groups: alveolates, excavates, and Rhizaria. Our analysis weakly suggests that Apusozoa, represented by Ancyromonas and the apusomonads (Apusomonas and the highly diverse and much more ancient genus Amastigomonas, from which it evolved), are not closely related to other Rhizaria and may be the most divergent bikont lineages. Although Ancyromonas and apusomonads appear deeply divergent in 18S rRNA trees, the trees neither refute nor support the monophyly of Apusozoa. The bikont phylum Cercozoa weakly but consistently appears as sister to Retaria (Foraminifera; Radiolaria), together forming a hitherto largely unrecognized major protozoan assemblage (core Rhizaria) in the eukaryote tree. Both 18S rRNA sequence trees and a rare deletion show that nonciliate haplosporidian and paramyxid parasites of shellfish (together comprising the Ascetosporea) are not two separate phyla, as often thought, but part of the Cercozoa, and may be related to the plant-parasitic plasmodiophorids and phagomyxids, which were originally the only parasites included in the Cercozoa. We discuss rRNA trees in relation to other evidence concerning the basal diversification and root of the eukaryotic tree and argue that bikonts and opisthokonts, at least, are holophyletic. Amoebozoa and bikonts may be sisters—jointly called anterokonts, as they ancestrally had an anterior cilium, not a posterior one like opisthokonts; this contrasting ciliary orientation may reflect a primary divergence in feeding mode of the first eukaryotes. Anterokonts also differ from opisthokonts in sterol biosynthesis (cycloartenol versus lanosterol pathway), major exoskeletal polymers (cellulose versus chitin), and mitochondrial cristae (ancestrally tubular not flat), possibly also primary divergences.  相似文献   

12.
Molecular and morphological evidence points to the ancyromonad Ancyromonas as a plausible candidate for the closest relative to the common ancestor of metazoans, fungi, and choanoflagellates (the Opisthokonta). Using 18S rDNA sequences from most of the major eukaryotic lineages, maximum-likelihood, minimum-evolution, and maximum-parsimony analyses yielded congruent phylogenies supporting this hypothesis. Combined with ultrastructural similarities between Ancyromonas and opisthokonts, the evidence presented here suggests that Ancyromonas may form an independent lineage, the Ancyromonadida Cavalier-Smith 1997, closer in its relationship to the opisthokonts than is its nearest protist relatives, the Apusomonadida. However, the very low bootstrap support for deep nodes and hypothesis testing indicate that the resolving power of 18S rDNA sequences is limited for examining this aspect of eukaryotic phylogeny. Alternate branching positions for the Ancyromonas lineage cannot be robustly rejected, revealing the importance of ultrastructure when examining the origins of multicellularity. The future use of a multigene approach may additionally be needed to resolve this aspect of eukaryotic phylogeny. Received: 27 March 2000 / Accepted: 12 June 2000  相似文献   

13.
Phylogenetic and Ecological Analysis of Novel Marine Stramenopiles   总被引:12,自引:3,他引:9       下载免费PDF全文
Culture-independent molecular analyses of open-sea microorganisms have revealed the existence and apparent abundance of novel eukaryotic lineages, opening new avenues for phylogenetic, evolutionary, and ecological research. Novel marine stramenopiles, identified by 18S ribosomal DNA sequences within the basal part of the stramenopile radiation but unrelated to any previously known group, constituted one of the most important novel lineages in these open-sea samples. Here we carry out a comparative analysis of novel stramenopiles, including new sequences from coastal genetic libraries presented here and sequences from recent reports from the open ocean and marine anoxic sites. Novel stramenopiles were found in all major habitats, generally accounting for a significant proportion of clones in genetic libraries. Phylogenetic analyses indicated the existence of 12 independent clusters. Some of these were restricted to anoxic or deep-sea environments, but the majority were typical components of coastal and open-sea waters. We specifically identified four clusters that were well represented in most marine surface waters (together they accounted for 74% of the novel stramenopile clones) and are the obvious targets for future research. Many sequences were retrieved from geographically distant regions, indicating that some organisms were cosmopolitan. Our study expands our knowledge on the phylogenetic diversity and distribution of novel marine stramenopiles and confirms that they are fundamental members of the marine eukaryotic picoplankton.  相似文献   

14.
Culture-independent molecular analyses of open-sea microorganisms have revealed the existence and apparent abundance of novel eukaryotic lineages, opening new avenues for phylogenetic, evolutionary, and ecological research. Novel marine stramenopiles, identified by 18S ribosomal DNA sequences within the basal part of the stramenopile radiation but unrelated to any previously known group, constituted one of the most important novel lineages in these open-sea samples. Here we carry out a comparative analysis of novel stramenopiles, including new sequences from coastal genetic libraries presented here and sequences from recent reports from the open ocean and marine anoxic sites. Novel stramenopiles were found in all major habitats, generally accounting for a significant proportion of clones in genetic libraries. Phylogenetic analyses indicated the existence of 12 independent clusters. Some of these were restricted to anoxic or deep-sea environments, but the majority were typical components of coastal and open-sea waters. We specifically identified four clusters that were well represented in most marine surface waters (together they accounted for 74% of the novel stramenopile clones) and are the obvious targets for future research. Many sequences were retrieved from geographically distant regions, indicating that some organisms were cosmopolitan. Our study expands our knowledge on the phylogenetic diversity and distribution of novel marine stramenopiles and confirms that they are fundamental members of the marine eukaryotic picoplankton.  相似文献   

15.
Recent palaeogenetic studies have demonstrated the occurrence of preserved ancient DNA (aDNA) in various types of fossilised material. Environmental aDNA sequences assigned to modern species have been recovered from marine sediments dating to the Pleistocene. However, the match between the aDNA and the fossil record still needs to be evaluated for the environmental DNA approaches to be fully exploited. Here, we focus on foraminifera in sediments up to one thousand years old retrieved from the Hornsund fjord (Svalbard). We compared the diversity of foraminiferal microfossil assemblages with the diversity of aDNA sequenced from subsurface sediment samples using both cloning and high‐throughput sequencing (HTS). Our study shows that 57% of the species archived in the fossil record were also detected in the aDNA data. However, the relative abundance of aDNA sequence reads and fossil specimens differed considerably. We also found a limited match between the stratigraphic occurrence of some fossil species and their aDNA sequences, especially in the case of rare taxa. The aDNA data comprised a high proportion of non‐fossilised monothalamous species, which are known to dominate in modern foraminiferal communities of the Svalbard region. Our results confirm the relevance of HTS for studying past micro‐eukaryotic diversity and provide insight into its ability to reflect fossil assemblages. Palaeogenetic studies including aDNA analyses of non‐fossilised groups expand the range of palaeoceanographical proxies and therefore may increase the accuracy of palaeoenvironmental reconstructions.  相似文献   

16.
Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny‐based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface ( http://phytoref.fr ), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high‐throughput sequencing.  相似文献   

17.
The rainforests of Amazonia comprise some of the most biologically diverse ecosystems on Earth. Despite this high biodiversity, little is known about how landscape changes that took place in deep history have affected the assembly of its species, and whether the impact of such changes on biodiversity can still be observed. Here, we present a hypothesis to explain our observation that plants typical of Neotropical coastal habitats also occur in western Amazonia, in some cases thousands of kilometres away from the coast. Evidence on their current distribution, dispersal biology and divergence times estimated from molecular phylogenies suggest that these plants may be the legacy of the large marine‐influenced embayment that dominated the area for millions of years in the Neogene. We hypothesize that coastal plants dispersed along the shores of this embayment and persisted as inland relicts after the marine incursion(s) retreated, probably with the aid of changes in soil conditions caused by the deposition of marine sediments. This dispersal corridor may also have facilitated the colonization of coastal environments by Amazonian lineages. These scenarios could imply an unexpected coastal source that has contributed to Amazonia's high floristic diversity and led to disjunct distributions across the Neotropics. We highlight the need for future studies and additional evidence to validate and shed further light on this potentially important pattern.  相似文献   

18.
19.
Neustonic organisms inhabit the sea surface microlayer (SML) and have important roles in marine ecosystem functioning. Here, we use high‐throughput 18S rRNA gene sequencing to characterize protist and fungal diversity in the SML at a coastal time‐series station and compare with underlying plankton assemblages. Protist diversity was higher in February (pre‐bloom) compared to April (spring bloom), and was lower in the neuston than in the plankton. Major protist groups, including Stramenopiles and Alveolata, dominated both neuston and plankton assemblages. Chrysophytes and diatoms were enriched in the neuston in April, with diatoms showing distinct changes in community composition between the sampling periods. Pezizomycetes dominated planktonic fungi assemblages, whereas fungal diversity in the neuston was more varied. This is the first study to utilize a molecular‐based approach to characterize neustonic protist and fungal assemblages, and provides the most comprehensive diversity assessment to date of this ecosystem. Variability in the SML microeukaryote assemblage structure has potential implications for biogeochemical and food web processes at the air‐sea interface.  相似文献   

20.
The taxa–area relationship (TAR) and the distance–decay relationship (DDR) both describe spatial turnover of taxa and are central patterns of biodiversity. Here, we compared TAR and DDR of bacterial communities across different marine realms and ecosystems at the global scale. To obtain reliable global estimates for both relationships, we quantified the poorly assessed effects of sequencing depth, rare taxa removal and number of sampling sites. Slope coefficients of bacterial TARs were within the range of those of plants and animals, whereas slope coefficients of bacterial DDR were much lower. Slope coefficients were mostly affected by removing rare taxa and by the number of sampling sites considered in the calculations. TAR and DDR slope coefficients were overestimated at sequencing depth <4000 sequences per sample. Noticeably, bacterial TAR and DDR patterns did not correlate with each other both within and across ecosystem types, suggesting that (i) TAR cannot be directly derived from DDR and (ii) TAR and DDR may be influenced by different ecological factors. Nevertheless, we found marine bacterial TAR and DDR to be steeper in ecosystems associated with high environmental heterogeneity or spatial isolation, namely marine sediments and coastal environments compared with pelagic ecosystems. Hence, our study provides information on macroecological patterns of marine bacteria, as well as methodological and conceptual insights, at a time when biodiversity surveys increasingly make use of high‐throughput sequencing technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号