首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a light-emitting diode (LED) as the light source, the effects of eight different light treatments [white light (control, W), purple light (P), blue light (B), red light (R), green light (G), yellow light (Y), red–blue light in a 9:1 ratio (9R/1B), and red–blue light in a 4:1 ratio (4R/1B)] on the growth, quality and nitrogen metabolism of lettuce were studied. The results showed that compared with the white light, the purple light, blue light, red light, and the red-blue light combination could all increase the biomass of the aboveground part of lettuce to various degrees, while green light and yellow light inhibited lettuce growth. Under blue light, the contents of soluble protein and flavonoid in lettuce were the highest; under red light, the soluble sugar content was the highest, while the contents of soluble protein, free amino acids, and vitamin C (VC) were relatively higher under the 4R/1B light condition. Compared with white light, the sources of purple, blue, and red lights as well as the red–blue light combination all significantly reduced nitrate accumulation in lettuce, and the activities of the nitrogen (N) metabolism-related enzymes such as nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were increased to varying degrees. In contrast, the contents of nitrate and ammonium N were significantly accumulated in lettuce under green light, and the activities of relative enzymes were significantly reduced. Therefore, the purple light, blue light, and red–blue combination light sources could promote N assimilation and improve the aboveground biomass accumulation in lettuce by improving the activity of the N metabolism-related enzymes in lettuce. Particularly under the 4R/1B light source, the biomass, soluble protein, VC, and total amino acid content were rather high in lettuce, which indicated that the 4R/1B light source could better effectively improve the nutritional quality and promote the growth of lettuce, while yellow light and green light are not suitable to serve as direct sources in a plant factory. These results provide a certain theoretical basis for the regulation of the light environment in cultivation facilities.  相似文献   

2.
Light-emitting diodes (LEDs) are a promising technology with a potential to improve the irradiance efficiency, light quality, and the light spectrum for increasing plant yield and quality. In this experiment, we investigated the impacts of various LED light qualities, including 100% red, 100% blue, 70% red + 30% blue, and 100% white, on the growth and photosynthesis, phytochemical contents, and mineral element concentrations in lettuce (Lactuca sativa L. cv. ‘Grizzly’) in comparison to normal greenhouse conditions. Photon flux of 300 µmol m?2 s?1 was provided for 14 h by 120 LEDs set on a 60 cm × 60 cm sheet of aluminum platform in the growth chambers, where plants were grown for 60 d. Fresh mass per plant was significantly higher when grown under 100% blue and 70% red + 30% blue LEDs compared to the other environments including greenhouse conditions. Phytochemical concentrations and a nutritive value of lettuce were also significantly affected by the light treatments. Chlorophyll and carotenoid concentrations increased in the plants grown under 70% red + 30% blue LEDs compared to those grown in the greenhouse. Vitamin C content was 2.25-fold higher in the plants grown under 100% blue LEDs compared to those grown in the greenhouse. Higher photosynthesis and maximal quantum yield of PSII photochemistry were also observed in the plants treated with LED lights. The application of LED light led to the elevated concentrations of macro-and micronutrients in lettuce possibly because of the direct effect of LED light and lower stress conditions in the growth chambers compared to the greenhouse. Although the mechanism of the changes in lettuce grown under LED is not well understood, the results of this study demonstrated that LED light could be used to enhance the growth and nutritional value of lettuce in indoor plant production facilities.  相似文献   

3.
LED光源对不同品种生菜生长和品质的影响   总被引:3,自引:0,他引:3  
以自然光为对照(CK),探讨了LED红光(R)、蓝光(B)和红蓝组合光(RB)对不同品种生菜生长与品质的影响.结果显示:(1)不同光质处理的4个品种生菜的根长、株高及生物量积累等形态及生长指标具有相同的变化规律.(2)植株干鲜重、叶面积及根系活力在R和RB处理下都较大,而在B处理下较小;金祥、高华和永荣的B处理植株可溶性蛋白含量较高;联记、金祥和高华植株的淀粉含量在RB处理下较多,而永荣在R处理下较多;各品种植株可溶性糖含量在R和RB处理下较高,而永荣植株RB处理蔗糖含量较高,其余品种蔗糖含量在R处理下较高;金祥、高华和永荣VC含量在B和RB下较高,联记在RB下较高,各品种在R下均较低;植株总酚含量在各光质处理间无显著差异.(3)联记的硝态氮含量及亚硝酸还原酶对光质敏感,B处理能降低其硝态氮含量及亚硝酸还原酶活性,其他品种的硝态氮含量及亚硝酸还原酶活性在光质处理间无显著差异.研究表明,相同光质下品种间生长无显著差异,而各品种生菜植株在红光和红蓝组合光下生长较好,在红蓝光处理下品质较优,红蓝光是设施栽培生菜的良好光源.  相似文献   

4.
为了探索不同光质配比对紫叶生菜生长发育的影响,本试验以‘中蔬紫生菜’紫叶生菜为研究对象,以LED智能调光台为人工光源,通过在白光的基础上添加不同比例的红蓝光(1:1、2:1、4:1和1:2),研究不同光质配比对紫叶生菜光合特性和品质的影响.结果表明: 红蓝光比例为4:1时,紫叶生菜叶片叶绿素含量、RuBP羧化酶活性最大,电子传递效率最高,净光合速率和生长量也显著高于对照和其他处理,且硝酸盐含量最低.而添加1:2的红蓝光时,叶片可溶性蛋白和维生素C含量最高,花青素、类黄酮、总酚等次生代谢物含量以及总抗氧化能力显著高于对照和其他处理.因此,在白光基础上增加适当比例的红蓝光可提高紫叶生菜的光合特性或改善产品品质.  相似文献   

5.
Summary The influence of light quality on competence and determination for organogenesis was investigated using lettuce cotyledon explants. Lettuce seedlings from four genotypes were germinated in the dark or under white, red, or blue light. Cotyledon explants were excised and cultured on a shoot-inducing medium for 28 d under white light. Germination in the dark reduced shoot numbers, suggesting that light improves the competence of explants for organogenesis. When explants from seedlings germinated under white light were cultured under different light qualities, blue was found to inhibit shoot production while red light either promoted production or had no effect on shoot number compared to controls. Treatment with blue plus red light failed to overcome the inhibition by blue light. To ascertain the temporal responses of explants to light quality, they were cultured under red or blue light prior to transfer to the alternate treatment. Exposure to blue light within 7 d of excision permanently reduced explant competence for organogenesis. Exposure after this time had a minimal effect. These results suggest that both phytochrome and cryptochrome can regulate shoot production from lettuce cotyledon explants and blue light can only inhibit organogenesis, in lettuce, during a relatively small developmental window.  相似文献   

6.
Brian Thomas  H. G. Dickinson 《Planta》1979,146(5):545-550
The effect of blue light on hypocotyl extension in de-etiolated seedlings of lettuce, cucumber and tomato was investigated under conditions which precluded the involvement of phytochrome. Small but highly inhibitory amounts of blue light were added to a high intensity background illumination from low pressure sodium lamps. A log-linear response for inhibition of hypocotyl extension against the blue light fluence rate was obtained for lettuce and cucumber, and inhibition in tomato was also related to the blue light fluence rate. The added blue light did not alter phytochrome photostationary state and its effect was independent of the total fluence rate. Growth inhibition by Pfr could be demonstrated in tomato and cucumber but not in lettuce. The results indicate that two photoreceptors may normally be involved in the control of seedling growth but their relative importance varies greatly between species.Abbreviations HIR high irradiance reaction - Pfr far red absorbing form of phytochrome - Pr red absorbing form of phytochrome  相似文献   

7.
不同LED光源对乌塌菜生长、光合特性及营养品质的影响   总被引:1,自引:1,他引:0  
与传统光源相比,LED具有光谱可控、亮度高但发热量小、寿命长等优势.LED光源可实现光谱可控,通过调制光谱与植物的感光细胞最优结合来影响植物的生长发育与营养品质.本研究利用LED精量调制光源,以‘菊花小八叶’乌塌菜品种为试验材料,设红光、蓝光、红/蓝光(3/1)、红/蓝光(7/1)、白/红/蓝光(3/2/1)5个处理,以白光为对照,研究不同光质对乌塌菜生长、光合特性及品质的影响.结果表明: 红光有利于乌塌菜生物量和茎粗的增大,而蓝光有抑制作用;叶绿素含量以红/蓝光(7/1)处理最高,且叶绿素总量与红/蓝光比值呈正相关,虽然蓝光显著降低叶绿素含量,但提高了叶绿素 a/b 值;光合速率和蒸腾速率均以红光处理最高,与对照相比分别增加43.8%和55.1%,而蓝光处理下有较高的气孔导度及胞间CO2浓度.不同光质处理对乌塌菜的荧光参数有较大影响,白光的Fv/Fm、Fv/Fo和ΦPSⅡ均最大;红光可以提高可溶性糖含量,蓝光能提高可溶性蛋白含量,白光能增加维生素C含量.综合分析,红/蓝光(7/1)处理在增加叶片光合色素含量,提高光合速率,促进植株生长和改善营养品质方面为最优组合.  相似文献   

8.
光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响   总被引:7,自引:1,他引:6  
采用发光二极管(LED)精确调制不同光谱能量分布,以荧光灯光照为对照,研究光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响.结果表明:红光下番茄、莴苣幼苗的可溶性糖、淀粉和碳水化合物含量均显著高于对照,叶片叶绿体中淀粉粒膨大显著;蓝光极显著抑制了番茄下胚轴伸长,显著提高了莴苣和番茄幼苗叶片叶绿素a和类胡萝卜素含量;红蓝光下莴苣幼苗叶片的可溶性糖、淀粉、碳水化合物、蔗糖含量和C/N均达到最大值且显著高于红光处理,番茄和莴苣幼苗的主根显著伸长,幼苗叶片中叶绿体形态正常,基粒增多,基质片层清晰,淀粉粒体积明显小于红光处理.光质对植物幼苗的光形态建成、生长、碳氮代谢及叶绿体发育有显著影响;红光下光合产物积累显著但运输受阻严重,在红光中添加适量蓝光更有利于莴苣幼苗的碳水化合物积累,并可促进幼苗根系生长,有利于同化产物输出.  相似文献   

9.
We investigated the effects of various qualities of light-emitting diode (LED) light sources on the growth and carbohydrate accumulation of grape rootstock ‘Teleki 5BB’ culturedin vitro. Shoot fresh and dry weights and net photosynthetic rates were increased when plants were exposed to fluorescent lighting (control), red light, or a mixture of blue plus red, but were unaffected by blueonly radiation. Shoot elongation was significantly stimulated by red light whereas the combination of blue and red light was associated with the shortest shoots. However, the number of nodes did not differ among these treatments. Under monochromic blue or red light, sugar content and starch accumulation increased under the mixed-radiation treatment.  相似文献   

10.
Tengyue Zou  Bing Wu  Wen Wu  Long Ge  Yong Xu 《Phyton》2020,89(2):275-289
Light is the major source of energy for plants and as such has a profound effect on plant growth and development. Red and blue lights have been considered to best drive photosynthetic metabolism and are beneficial for plant growth and development, and green light was seen as a signal to slow down or stop. In this study, Arabidopsis thaliana (Arabidopsis) was used to investigate the effects of red, blue and green lights on the growth and development of plants from seed germination to seeding. Results demonstrated that red light showed a promotion effect but blue light a prohibition one in most stages except for the flowering time in which the effect of each light was just reversed. When mixed with red or blue light, green light generally at least partially cancelled out the effects caused by each of them. Results also showed that the same number of photons the plant received could cause different effects and choosing the right combination of different color of lights is essential in both promoting the growth and development of plants and reducing the energy consumption of lighting in plant factory.  相似文献   

11.
Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light‐emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental‐controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates, maximal photochemical efficiency, electron transport for carbon fixation (JPSII) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2O2 accumulation by increasing the activities of superoxide dismutase (EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.11) after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expressions were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable downregulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidative enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL.  相似文献   

12.
M. R. Turner  D. Vince 《Planta》1969,84(4):368-382
Summary A number of differences in the responses of Great Lakes lettuce seedlings to blue and far-red light indicate that more than one photo-sensitive pigment is involved in the photo-inhibition of hypocotyl elongation under highenergy conditions. In far-red light the inhibitory effect is restricted to young seedlings and is of limited duration; after 24 hours in far-red a rapid growth rate similar to that of plants maintained in darkness is resumed, despite continued irradiation. The onset of inhibition is relatively slow. Blue light, in contrast, exerts a strongly inhibitory effect on elongation at any age, and a slow rate of growth persists throughout the entire irradiation period. The onset of inhibition is very rapid. Furthermore, even when the inhibition in far-red had already been exhausted after prolonged exposure, transfer to blue light resulted in a prompt reduction in growth rate. Also the effect of far-red is almost completely lost after a pre-irradiation with red light which does not affect the response to blue. It is concluded that the responses to blue and far-red light in Great Lakes lettuce are not mediated by a single pigment system and that a distinct blue-sensitive pigment is present in addition to phytochrome. Red light has a number of different effects depending on conditions: (1) a pretreatment with red light almost completely prevents the inhibitory effect of a subsequent far-red irradiation, (2) a brief terminal treatment with red increases the inhibitory effect of either far-red or blue light; this is reversed by far-red, and (3) prolonged exposure to red light given alone increases the growth rate relative to darkness, because the more rapid elongation rate characteristic of young seedlings continues for longer with red light than in plants grown in darkness throughout.  相似文献   

13.
Influence of mixed LED radiation on the growth of annual plants   总被引:1,自引:0,他引:1  
We investigated the effect of mixed radiation from light-emitting diodes (LEDs) on the growth and flowering of ageratum, marigold, and salvia bedding plants. Blue, red, and far-red lights were applied under controlled environmental conditions for 28 d. Both the combination of blue-plus-red radiation as well as fluorescent lighting treatment (control) caused increases in dry weights, but shoot lengths were shortest when plants were exposed to blue plus red light compared with either red or blue plus far-red treatments. The number of floral buds as well as the occurrence of flower opening for ageratum and salvia plants was also enhanced under the blue plus red mixture. Likewise, carbohydrate accumulation was stimulated by that combination compared with the other radiation treatments.  相似文献   

14.
Light gradients and spectral regime were measured in Lactuca sativa L. cv. Grand Rapids achenes using fiber optic microsensors. The distribution of scattered light across lettuce achenes was linear for 660 and 730 nm and non-linear for 450 nm light. Spectra for scattered light within intact achenes also showed a non-linear increase with wavelength. The preferential attenuation of blue light by the pericarp and seed explains in part the relative ineffectiveness of blue light with respect to red in triggering germination of lettuce. Calculated action spectra for phytochrome-stimulated germination agree closely in the red with experimentally derived action spectra; however, there is little agreement within the blue.  相似文献   

15.
16.
Stimulation of lettuce seed germination by ethylene   总被引:24,自引:21,他引:3       下载免费PDF全文
Ethylene increased the germination of freshly imbibed lettuce (Lactuca sativa L. var. Grand Rapids) seeds. Seeds receiving either red or far-red light or darkness all showed a positive response to the gas. However, ethylene was apparently without effect on dormant seeds, those which failed to germinate after an initial red or far-red treatment. Carbon dioxide, which often acts as a competitive inhibitor of ethylene, failed to clearly reverse ethylene-enhanced seed germination. While light doubled ethylene production from the lettuce seeds, its effect was not mediated by the phytochrome system since both red and far-red light had a similar effect.  相似文献   

17.
在室内人工光源照射条件下, 探究150 μmol∙m-2·s-1光强下不同比例的红蓝光对拟南芥(Arabidopsis thaliana)生长发育的影响。以哥伦比亚(Columbia-0)野生型拟南芥为研究对象, 采用荧光粉激发型LED作为植物生长光源, 以SrSiAlN3为红色基底, 调节荧光粉添加量获得不同红蓝光谱, 考察不同光照条件下拟南芥萌发率、根长、株高、叶绿素含量和相对电导率等参数的变化规律。结果表明, 在荧光粉激发型LED光照调节下的拟南芥具有更高的萌发率、根长、株高、叶绿素含量和相对电导率, 且在红蓝光质比为2:1时萌发率(95.63%)和叶绿素含量(26.7)最高; 在红蓝光质比为4:5时根长(4.19 cm)较长; 在红蓝光质比为4:1时株高(15.5 cm)较高; 在红蓝光质比为4:5时相对电导率(40.5 S·m-1)较大。研究结果表明相对平衡的光质(红蓝光质比为4:1)有利于拟南芥生长发育, 且减少蓝光比例对根系生长及叶绿素积累有一定的促进作用。研究表明不同光谱对模式植物拟南芥的生长发育有较明显的影响, 改变光谱组成可以对植物的生长发育起不同程度的调控作用。  相似文献   

18.
This study aimed to investigate the influence of illumination with different light spectra on growth and stress response in pearl gourami Trichopodus leerii Bleeker, 1852. Fish (6.35 ± 0.43 cm, 5.69 ± 0.67 g) were reared in 8 glass aquaria each with 25 fish under one of four different lighting conditions: yellow (max 546 nm), red (max 605 nm), blue (max 470 nm) and white (control). Experiments lasted for 90 days. The stress response was evaluated by measuring cortisol levels. No significant effect was observed on final body weight, length and specific growth rate of fish. However, best values for these characteristics were achieved for fish reared under yellow light. A significant higher weight gain, condition factor was found in fish reared under yellow light compared with fish reared under blue or red light. In contrast, a lower final body weight, specific growth rate and weight gain were achieved for fish reared under red light. Feed conversion ratio was significantly lower in fish under yellow light compared with red or blue light. Stressed fish showed lower cortisol levels under yellow light compared with other light exposures. The study indicates that, pearl gourami grows better under yellow light and that yellow light lowers the stress-induced cortisol response.  相似文献   

19.
Four days oldAmaranthus seedlings responded to light treatment with an increase of amaranthin accumulation. With increasing irradiation time, red light caused a saturation effect. Blue light induced a high irradiation response. The blue light effect was reversible to a certain extent by far-red irradiation given at the end of the treatment with blue light. Intermittent red light (3 h red light, 3 h dark, …) caused a higher amaranthin accumulation than 24 h continuous red light. Results obtained with red and blue light are discussed on the basis of the phytochrome system.  相似文献   

20.
The effect of light quality (spectral quality) and photoperiod (day length) were studied on flowering of Cyclamen persicum cv. Dixie White. Light generated from light emitting diodes (LED) i.e. monochromatic blue (10 or 12 h per day), monochromatic red (10 or 12 h per day), blue plus red (10 or 12 h per day) and fluorescent lights were used in these studies. It was found that blue plus red LEDs improved flower induction in cyclamen, the number flower buds and open flowers being highest in the plants grown under blue plus red LED (10 h per day). Blue and red LEDs alone reduced the flowering response. Peduncle length (flower stalk length) and blooming period of flowers were also influenced by light qualities and photoperiod treatments. Peduncle length was 23.8 cm on plants grown under red LED (12 h per day) treatment but 14 cm on plants grown under fluorescent light. Blooming period of flowers grown under fluorescent light was 20 d, whereas it was 40 d with the plants grown under red LEDs (10 h per day). The results indicate that flowering and subsequent growth of cyclamen can be controlled by manipulating light quality and lighting period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号