首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
鹅掌楸属植物花粉萌发前后壁的超微结构   总被引:1,自引:0,他引:1  
观察描述了在电镜下中国鹅掌楸(Liriodendronchinense)和北美鹅掌楸(L.tulipifera)2种植物花粉壁的超微结构及其水合后的变化。(1)成熟花粉壁由6层组成,即外壁3层──外层,中层1和中层2,内壁3层──内壁1,内壁2和内壁3。(2)花粉水合时,在内壁3与质膜之间由P一粒子(多糖-粒子)和被膜小泡参与形成新层。(3)花粉萌发时,由内壁3的一部分和新层突出萌发孔共同形成花粉管壁。(4)新层于花粉管形成早期分成2层──外染色深的果胶层和内电子透明的胼胝质层。  相似文献   

2.
荞麦水合花粉粒和生长中的花粉管中内质网潴泡形成的囊袋状结构较少见,但内质网囊袋中含有丰富的被膜小泡,直径约为100-150nm。刚刚形成的花粉管中,被膜小泡主要来自于花粉粒营养细胞的细胞质。生长中的花粉管的被膜小泡可由高尔基体分泌形成。另外还观察到内质网的碎裂也是荞麦花粉管中产生被膜小泡的一种机制。花粉管的被膜小泡中含有花粉管壁的前体物质,与花粉管的壁融合参与花粉管的生长。被膜小泡可能含有与脂体和造粉质体水解有关的酶,参与此类物质的降解。荞麦花柱和柱头细胞内含物的解体物质参与花粉管的生长。  相似文献   

3.
知母绒毡层和乌氏体细微结构的研究   总被引:5,自引:1,他引:4  
从个体发育来看,知母绒毡层具有3个明显的特点;(1)在小孢子母细胞阶段,绒毡层细胞中有丰富的细胞器,如粗糙内质网,脂体,造粉体和小泡等,粗糙内质网-脂体-小泡常常联系在一起,形成细胞器复合体。(2)在单核花粉阶段,绒毡层细胞质中出现大量小泡,它们可以融合成小泡,而且在小泡或大泡中开始沉积与脂体电子密度相似的亲锇物质,这些物质或者充满整个小泡,或者沉积在小泡周缘,此刻,也是乌氏体形成并达到高峰的阶段。(3)在成熟花粉阶段,绒毯层细胞几乎被具膜束缚的小型脂粒和巨型脂体所占据,这些亲锇物质是质体起源的,也许它们是花粉鞘的先质。  相似文献   

4.
从个体发育来看,知母绒毡层具有3个明显的特点;(1)在小孢子母细胞阶段,绒毡层细胞中有丰富的细胞器,如粗糙内质网,脂体,造粉体和小泡等,粗糙内质网-脂体-小泡常常联系在一起,形成细胞器复合体。(2)在单核花粉阶段,绒毡层细胞质中出现大量小泡,它们可以融合成小泡,而且在小泡或大泡中开始沉积与脂体电子密度相似的亲锇物质,这些物质或者充满整个小泡,或者沉积在小泡周缘,此刻,也是乌氏体形成并达到高峰的阶段。(3)在成熟花粉阶段,绒毯层细胞几乎被具膜束缚的小型脂粒和巨型脂体所占据,这些亲锇物质是质体起源的,也许它们是花粉鞘的先质。  相似文献   

5.
用pUC19质粒作载体,克隆了黄地老虎颗粒体病毒(Agrolissegetumgranulosisvirus,简称AsGV)DNAPstI-D.E.F.G.H.J.K.等7个片段。以[ ̄(32)P]-dCTP标记的油桐尺蠖核型多角体病毒(Buzurasuppressarianuclcarpolyhedrosisvirus简称BsNPV)多角体蛋白基因为探针,在37℃条件下对AsGV)颗粒体蛋白基因进行了定位,将其分别定位于BslⅡ-S或TPsTI-A或B和EciRI-A片段上。  相似文献   

6.
固体电极上L-半胱氨酸的电合成ElectrosynthesisofL-cysteineatsolidelectrodes¥//(英)Ralph,TR.,Hitchman,ML,Millington,JP等著张关永摘译陆兆锷校华东理工大学化学系上海20...  相似文献   

7.
受番茄花叶病毒侵染后寄主的超微病变研究   总被引:9,自引:0,他引:9  
洪健  薛朝阳 《Acta Botanica Sinica》1999,41(12):1259-1263
电镜观察了番茄花叶病毒(ToMV)侵染不同寄主的细胞超微结构变化。在25℃下ToMV侵染番茄(LycopersiconesculentumMill)后,病毒粒子在叶片的表皮,薄壁细胞,维管束组织的细胞质中形成大块结晶体和类结晶体,液泡膜处产生小泡结构,有多泡体和髓鞘样结构构伸入液泡中,在25℃下ToMV侵染珊西烟(icotianatalacumL.cv.Xanthinn)后,除存在病毒结晶体和类结  相似文献   

8.
杭州石荠苎和石香薷(唇形科)的传粉生物学比较研究   总被引:10,自引:0,他引:10  
杭州石荠苎(MoslahangchouensisMatsudas)和石香薷(M.chinensisMaxim.)是一对种对,前零星分布于浙江,后广布于长江流域以南地区。杭州石荠苎以异花传粉为主,花粉/胚珠(P/O)为756=-6163;石香薷以自花传粉为主,P/O=110。  相似文献   

9.
迎红杜鹃(RhododendronmucronulatunTurca.)的成熟花粉为二细胞型,精细胞在花粉管中形成。花粉管中的两个精细胞及与营养核之间相联结,形成在雄性殖单位。两个精细胞的细胞质中均含有丰富的细胞器,包括质体,线粒体,小泡及微管,内质网和高尔基体稀少。  相似文献   

10.
棉花(Gossypium hirsutum L.)花粉在授粉后水合至萌发时期的营养细胞中贮藏的大量淀粉粒和脂体被动用。超微结构的观察表明,首先是造粉质体中的淀粉粒降解,尔后是脂体。在花粉水合至萌发时期,营养细胞中内质网和高尔基体十分活跃,并含丰富的被膜小泡。内质网的构型发生明显的变化:花粉刚水合时内质网潴泡高度扩张,不同程度扩张的内质网潴泡连续成网状并折迭形成许多囊袋状结构单位,其中包含造粉质体、脂体和被膜小泡群;其后,内质网潴泡形成的囊袋状结构消失,变为分支互通的网状结构;至萌发时,内质网潴泡略为扩张,有些连续成简单的网状,有些呈游离的囊泡状。被膜小泡始终是成群地分布,并与脂体联结,当脂体降解时一些被膜小泡与之融合。根据棉花花粉在水合至萌发时期,营养细胞质中存在独特形态的内质网系统和含丰富的被膜小泡,它们的动态行为及与淀粉和脂体的转化和降解之间的密切关系,讨论了这两种细胞器可能的功能。  相似文献   

11.
枸杞花药发育过程中脂滴和淀粉粒的分布特征   总被引:1,自引:0,他引:1  
宁夏枸杞(Lycium barbarurn L.)花药发育过程中,淀粉粒和脂滴两种营养物质的积累和分布具有一定的特点:在造孢细胞时期,药隔薄壁细胞,表皮和药室内壁细胞中开始积累淀粉粒,而造孢细胞、绒毡层细胞和中层细胞中则没有淀粉粒。在四分体时期,绒毡层细胞开始积累脂滴并且数量逐渐增加。到小孢子晚期,绒毡层细胞降解,内含脂滴流入药室中。在小孢子发育过程中既没有淀粉粒也没有脂滴积累,直到二胞花粉的大液泡消失后花粉粒中才开始积累脂滴,然后又开始出现淀粉粒。枸杞成熟花粉中的营养储存物是脂滴和淀粉粒。  相似文献   

12.
Growth of the Lilium longiflorum pollen tube in vitro is restricted to a zone extending back 3–5 μ from the tip. Electron micrographs of cross and longitudinal thin sections of L. longiflorum and L. regale pollen tubes reveal that the cytoplasm of the nongrowing region of the tube contains an abundance of mitochondria, amyloplasts, Golgi bodies, endoplasmic reticulum, lipid bodies, and vesicles. In contrast, the growing tip is characterized by an abundance of vesicles and an absence of other cytoplasmic elements. The vesicles appear to be of 2 types. One is spherical, about 0.1 μ in diameter, stains strongly with phosphotungstic acid, apparently arises from the Golgi apparatus and appears to contribute to tube wall and plasmalemma formation. The other type is irregular in shape, 0.01-0.05 μ in diameter, stains strongly with lead hydroxide, and is of unknown origin and function. Cytochemical analysis indicates that the tips of L. longiflorum pollen tubes are singularly rich in ribonucleic acid, protein, and carbohydrate. These findings are discussed in relation to tube growth.  相似文献   

13.
At the end of mitosis in the lily pollen microspore, the fan-shaped cell plate gives rise to a cell wall delineating a hemispherical cell. At first, the cell wall of the newly formed generative cell and the intine-3 layer of the pollen grain wall are inseparable. Gradually, the wall of the generative cell near the pollen grain wall becomes thicker and wall segments are formed between the thickened zones, and these make a network system by which the generative cell becomes suspended and separated from the pollen grain wall. After the separation, the intine-3 layer is formed inside the intine 2. The generative cell wall and the intine-3 layer are formed by coated vesicles, polysaccharide particles and rough ER.  相似文献   

14.
Summary Protoplasts from pollen grains of Lilium longiflorum regenerate amorphous cellulosic cell walls in culture, during which some precursors of cellulose are polymerized, thus producing progressively harder cellulosic cell walls as the period of culture continues. It is presumed that the components of the cell wall regenerated during 1 week in culture differ from those of the intine of the pollen grain wall. The regenerated cell wall is formed by means of large smooth vesicles; in addition, numerous coated vesicles and pits aid in wall regeneration. The pollen tube that germinates from the 8-day-old cultured protoplast has numerous Golgi bodies and many vesicles which build the pollen tube wall. The tube wall has two layers just like a normal pollen tube wall.  相似文献   

15.
Summary Numerous polysaccharide-rich particles (P-particles) occur in the tip region of growing grass pollen tubes, where they apparently contribute to the extending wall. In other families the corresponding bodies have been shown to originate from dictyosome activity during pollen tube growth. However, in the grasses the main synthesis precedes anthesis; the P-particles represent up to 30% of the reserves of the vegetative cell of the dormant grain, numbering over one million in the pollen grain of rye. Their membranes are incomplete. The polysaccharide content, which is initially coarsely granular but becomes microfibrillar with hydration, is readily extracted with ammonium oxalate, and is probably pectic in nature. Simple methods for isolating the particles in relatively pure populations are described. Hydrolysis yields principally galactose, arabinose, glucose, and rhamnose. Apart from proteins derived from the original bounding membranes, a protein fraction is tenaciously bound to the polysaccharide. Isolated P-particles move anodically in an electrical field, and the possibility that their movement from the grain to the tube tip during growth depends on a potential gradient, already demonstrated for lily pollen tubes, is considered.  相似文献   

16.
The growth of the pollen tube wall of Oenothera is effected by the expulsion of fibrillar material from the cytoplasm into the developing wall. This material may also be seen in the cytoplasm, contained in membrane-bound vesicles. It is not clear how the content of the vesicles is discharged, but it appears not to involve the participation of microtubules. The source of the cytoplasmic fibrillar bodies depends upon the stage of development of the pollen tube. The earilest growth is derived from the inclusion into the wall of vesicles containing pre-formed materials present in the grain on pollination. During the next stage of growth the wall is derived from the content of double-membraned inclusions also present in the pollen. The content of the former vesicles is not so similar to the wall as the latter, but intermediates between the 2 types of vesicle may be seen in the cytoplasm, indicating that the former are formed from the latter. Most of the tube wall is derived from the products of dictyosomes in the pollen grain or tube. These dicytosomes are few in number and they must be exceedingly active. This, and the observation that dictyosome vesicles are frequently associated with banked complexes of mitochondria, indicates that some steps in the metabolism of the vesicular content, perhaps phosphorylation, take place distant from the dicytosomes. These different sources of fibrillar material presumably permit the rapid starting of tube growth, without any attendant metabolism. However, it would be impossible to include enough pre-formed wall material in the grain to enable the full growth of the tube, so once started, it seems that the tube then relies on the elaboration of simple reserves for the contruction of its wall. These reserves are likely to be held in the pollen, and may be the large numbers of starch grains characteristic of the pollen cytoplasm.  相似文献   

17.
The ultrastructure of the synergids of Proboscidea louisianica was investigated from just before fertilization until 48 hr after pollination. It was found that the cytoplasm of one synergid consistently begins to degenerate before arrival of the pollen tube at the embryo sac, and that it is always this synergid which receives the pollen tube tip and its discharge. The other synergid (persistent synergid) remained unchanged throughout the study period. Polysaccharide vesicles of pollen tube origin were observed fusing with the pollen tube wall as well as contributing to cell wall formation of the degenerate synergid. In one ovule (48 hr after pollination) two pollen tubes had entered and grown the length of the micropyle, but only the first tube penetrated the degenerate synergid and discharged normally. The second pollen tube was abutting against the persistent synergid, but had not entered or discharged. In another exceptional case (18 hr after pollination), a pollen tube had grown the length of the micropyle, but did not discharge, or enter either synergid. Both synergids of this ovule were observed to be completely intact. It is concluded that synergid and pollen tube cytoplasmic degeneration is the result of a very specific interaction between these two cells and that this degeneration is probably a prerequisite for normal pollen tube entrance and discharge into the embryo sac, and for male gamete transfer to the egg and central cell.  相似文献   

18.
The monocolpate pollen grain of Narcissus pseudonarcissus L.has two preferred sites for tube emergence, one at each endof the colpus. While the cellulosic microfibnls of the innerlayer of the intine are disposed circumferentially in the centreof the grain, the microfibrils in these terminal sites are shorterand randomly oriented Soon after the beginning of hydration,inclusions of the vegetative cell begin movement, firstly ina rotatory manner, and then in a pattern focused on one or bothgermination sites, where the intine bulges as hydration progresses.These changes are associated with the evolution of the actincytoskeleton. Actin is present in the unactivated grain in theform of fusiform bodies. During hydration these dissociate toform finer fibrils, initially randomly disposed. Then, correlatedwith the change of the pattern of movement in the vegetativecell, the actin fibril system becomes polarized towards thegermination sites, where shorter fibrils accumulate. Callose,absent from the ungerminated grain, is deposited within thecellulosic wall in these locations, forming a shallow dome whicheventually develops into an annulus subtending the inner calloselining of the emerging tube. The transition to cylindrical growthis associated firstly with the development of zonation in thecytoplasm of the vegetative cell, with the tip occupied by apopulation of wall precursor bodies (P-particles) and a denseaggregate of short actin fibrils; and then with the establishmentof the ‘inverse fountain’ pattern of movement characteristicof the apical part of the extending tube. Narcissus pseudonarcissus L, pollen activation, pollen germination, actin cytoskeleton, tip-growth system, pollen-tube wall development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号