首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Phosphorylated extracellular signal-regulated kinase (pERK) mediates neuronal synaptic plasticity, long-term potentiation, and learning and memory in the hippocampus. In this study, we examined pERK1/2 immunoreactivity and its protein level in the gerbil hippocampus at various ages. In the postnatal month 1 (PM 1) group, very weak pERK1/2 immunoreactivity was detected in the hippocampus. In the CA1 region, pERK1/2 immunoreactivity was considerably increased in the stratum pyramidale in the PM 6 group. Thereafter, pERK1/2 immunoreactivity was decreased. In the CA2/3 region, pERK1/2 immunoreactivity increased in an age-dependent manner until PM 12. Thereafter, numbers of pERK1/2-immunoreactive neurons were decreased. However, in the mossy fiber zone, pERK1/2 immunostaining became stronger with age. In the dentate gyrus, a few pERK1/2-immunoreactive cells were observed until PM 12. In the PM 18 and 24 groups, numbers of pERK1/2-immunoreactive cells were increased, especially in the polymorphic layer. In Western blot analysis, pERK1/2 level in the gerbil hippocampus was increased with age. These results indicate that total pERK1/2 levels are increased in the hippocampus with age. However pERK1/2 immunoreactivity in subregions of the gerbil hippocampus was changed with different pattern during normal aging.  相似文献   

2.
In this study, we investigated age-related changes in glucagon-like peptide-1 receptor (GLP-1R) immunoreactivity and its protein levels in the gerbil hippocampus during normal aging. In the postnatal month 3 (PM 3) group, GLP-1R immunoreaction was well observed in neurons, especially pyramidal and non-pyramidal cells in the hippocampus proper, and granule and polymorphic cells in the dentate gyrus. In the hippocampus proper, GLP-1R immunoreactivity in neurons was maintained until PM 24. In the dentate gyrus, however, GLP-1R immunoreactivity in granule cells, not polymorphic cells, was hardly detected from PM 6. Western blot analysis also showed that age-dependent change patterns in GLP-1R protein levels in the gerbil hippocampus were similar to the immunohistochemical changes. These results indicate that GLP-1R immunoreactivity was markedly decreased in dentate granule cells from PM 6, showing that GLP-1R immunoreactivity and its protein levels were decreased in the adult and aged gerbil hippocampus.  相似文献   

3.
Previous studies have reported that calbindin D-28k (CB), a calcium-binding protein, containing neurons in the hippocampus play an important role in hippocampal excitability in epilepsy, because CB modulates the free calcium ion during seizure. Hence, in the present study, we investigated changes of CB expression in the hippocampus and its association in the Mongolian gerbil to identify roles of CB in epileptogenesis. CB immunoreactivity in the hippocampus was significantly lower in the pre-seizure group of seizure sensitive (SS) gerbils as compared with those seen in the seizure resistant (SR) gerbils. The distribution of CB immunoreactivity in the hippocampus showed significant difference after seizure on-set in SS gerbils. CB immunoreactivity in the hippocampal CA1, CA2 areas, and subiculum was lowest at 3h after seizure on-set; thereafter, the immunoreactivity became to increase to 12h after seizure on-set. Mossy fibers, Schaffer collaterals and dentate granule cells showed the highest CB immunoreactivity at 3h after seizure on-set; thereafter, the immunoreactivity became to decrease. In the case of the intrinsic and output connections of the hippocampus, a rapid decrease of CB serves an inhibitory function, which regulates the seizure activity and output signals from the hippocampus.  相似文献   

4.
Age-dependent studies on oligodendrocytes, which are the myelinating cells in the central nervous system, have been relatively less investigated. We examined age-dependent changes in Rip immunoreactivity and its protein level in the gerbil hippocampus during normal aging using immunohistochemistry and Western blot analysis with Rip antibody, an oligodendrocyte marker. Rip immunoreactivity and its protein level in the hippocampal CA1 region significantly increased at postnatal month 3 (PM 3). Thereafter, they decreased in the hippocampal CA1 region with age. At PM 24, Rip immunoreactive processes in the hippocampal CA1 region markedly decreased in the stratum radiatum. In the hippocampal CA2/3 region and dentate gyrus, the pattern of changes in Rip immunoreactivity and its protein level was similar to those in the hippocampal CA1 region; however, no significant changes were found in the CA2/3 region and dentate gyrus at various age stages. These results indicate that Rip immunoreactivity and protein level in the hippocampal CA1 region decreases significantly at PM 24 compared to the CA2/3 region and dentate gyrus.  相似文献   

5.
Melatonin exerts many physiological functions via its G protein-coupled receptors. In the present study, we investigated age-related changes in MT2 melatonin receptor immunoreactivity and its levels in the gerbil hippocampus during normal aging. In the postnatal month 1 (PM 1) group, MT2 immunoreaction was well observed in neurons in all subregions of the gerbil hippocampus. In the PM 3 and 6 groups, MT2 immunoreactivity in neurons was decreased compared to that in the PM 1 group. Thereafter, MT2 immunoreactivity in neurons was increased. In the PM 18 and 24 groups, MT2 immunoreactivity in neurons was strong in all subregions of the gerbil hippocampus. In addition, the number of MT2 immunoreactive cells was lowest at PM 3 and highest at PM 24. From western blot analysis, age-dependent change pattern in MT2 level in the gerbil hippocampus was similar to the immunohistochemical result. These results indicate that MT2 immunoreactivity and levels are altered in the gerbil hippocampus during normal aging; lowest at young adult stage and highest at aged stage.  相似文献   

6.
The insulin receptor has been reported to be associated with memory formation via the hippocampus. In this study, we observed age-related changes in the insulin receptor β immunoreactivity and its protein levels in the hippocampus of gerbils of various ages in order to identify the correlation between the insulin receptor β and aging processes in the hippocampus. Insulin receptor β immunoreactivity was mainly detected in the molecular and polymorphic layers of the dentate gyrus, and in mossy fibers, Schaffer collaterals, alveus and stratum lacunosum-moleculare of the hippocampus proper (CA1-3) of gerbils at postnatal month 1 (PM 1). Insulin receptor β immunoreactivity decreased with age in all of these structures, except for the alveus. Reduction of the insulin receptor β immunoreactivity was prominent in the molecular layer of the dentate gyrus at PM 6 and in the stratum lacunosum-moleculare of the CA1 region at PM 12, while insulin receptor β immunoreactivity was decreased in other regions in the PM 18 groups. In addition, insulin receptor β protein level in the whole hippocampus was slightly increased at PM 3, and it decreased in an age-dependent manner from PM 6 to PM 24. These reductions of the insulin receptor β in the hippocampus may be associated with age-related memory deficits in gerbils.  相似文献   

7.
Cyclooxygenases-2 (COX-2) is not only related to inflammation but also plays critical roles in brain development and synaptic signaling. In the present study, we investigated age-related changes in COX-2 immunoreactivity and protein levels in the gerbil hippocampus. In the hippocampal CA1 region (CA1) and dentate gyrus (DG), weak COX-2 immunoreactivity was observed at postnatal month 1 (PM 1), and COX-2 immunoreactivity was markedly increased at PM 18 and 24. In the CA2/3, COX-2 immunoreactivity was strong at PM 1. COX-2 immunoreactivities in the PM 3, 6 and 12 groups were decreased compared to that in the PM 1 group, and it was increased at PM 18 and 24. In addition, age-related changes in COX-2 levels were similar with immunohistochemical results in the CA2/3. These results suggest that COX-2 immunoreactivity and levels were high in the hippocampus of aged gerbils.  相似文献   

8.
Oxidative stress is one of predisposing factors to age-related neurodegeneration in the brain. In particular, thiol-containing groups are susceptible to oxidative stress, which induces the formation of the disulfide bond and/or hyperoxidized form of thiol-containing proteins. We observed the protein thiol levels in the hippocampal homogenates and also investigated changes in hyperoxidized form of peroxiredoxin (Prx–SO3) immunoreactivity and proteins levels in the gerbil hippocampal subregions during normal aging. Levels of total thiol, non-protein thiol, and protein thiol were decreased in the hippocampal homogenates with age. At post-natal month 1 (PM 1), pyramidal and non-pyramidal cells in the hippocampal CA1 region (CA1) showed Prx–SO3 immunoreactivity. Prx–SO3 immunoreactivity in the cells was decreased by PM 12, thereafter, Prx–SO3 immunoreactivity in the cells increased again with age. In the CA2/3, Prx–SO3 immunoreactivity in pyramidal cells was not significantly changed; however, the immunoreactivity in pyramidal cells was very low at PM 12. Prx–SO3 immunoreactivity in the dentate gyrus (DG) was distinctly changed during aging. At PM 1, Prx–SO3 immunoreactivity in granule and polymorphic cells was weak and strong, respectively. The immunoreactivity in the neurons was decreased with age, not shown in any neurons at PM 12. Thereafter, Prx–SO3 immunoreactivity increased again with age. In addition, Prx–SO3 protein level in the hippocampus was lowest at PM 12. These results suggest that thiol-containing proteins are changed during aging and Prx–SO3 immunoreactivity was different according to cells in the hippocampal subregion during aging.  相似文献   

9.
DNA methylation is a key epigenetic modification of DNA that is catalyzed by DNA methyltransferases (Dnmt). Increasing evidences suggest that DNA methylation in neurons regulates synaptic plasticity as well as neuronal network activity. In the present study, we investigated the changes in DNA methyltransferases 1 (Dnmt1) immunoreactivity and its protein levels in the gerbil hippocampal CA1 region after 5 min of transient global cerebral ischemia. CA1 pyramidal neurons were well stained with NeuN (a neuron-specific soluble nuclear antigen) antibody in the sham-group, Four days after ischemia–reperfusion (I–R), NeuN-positive (+) cells were significantly decreased in the stratum pyramidale (SP) of the CA1 region, and many Fluro-Jade B (a marker for neuronal degeneration)+ cells were observed in the SP. Dnmt1 immunoreactivity was well detected in all the layers of the sham-group. Dnmt1 immunoreactivity was hardly detected only in the stratum pyramidale of the CA1 region from 4 days post-ischemia; however, at these times, Dnmt1 immunoreactivity was newly expressed in GABAergic interneurons or astrocytes in the ischemic CA1 region. In addition, the level of Dnmt1 was lowest at 4 days post-ischemia. In brief, both the Dnmt1 immunoreactivity and protein levels were distinctively decreased in the ischemic CA1 region 4 days after transient cerebral ischemia. These results indicate that the decrease of Dnmt1 expression at 4 days post-ischemia may be related to ischemia-induced delayed neuronal death.  相似文献   

10.
Hippocampal interneurons are local circuit neurons which are responsible for inhibitory activity in the hippocampus. Parvalbumin (PV) is one of useful markers for GABAergic interneurons, not for principle cells, in the hippocampus. In the present study, we investigated age-related changes in PV immunoreactive neurons and protein levels in the gerbil hippocampus during normal aging. PV immunoreactive neurons were detected in all hippocampal subregions of all groups. PV immunoreactive neurons, which innervated principal neurons, were non-pyramidal neurons in the hippocampal CA1-3 regions, and were polymorphic neurons in the dentate gyrus. In the hippocampal CA1 region, the number of PV immunoreactive neurons was significantly reduced in the postnatal month 3 (PM 3) group, which was sustained by PM 18, and, at PM 24, the number of PV immunoreactive neurons was significantly decreased. In the CA2/3 region and dentate gyrus, the number of PV immunoreactive neurons was significantly decreased at PM 6: Thereafter, the number of PV immunoreactive neurons was sustained until PM 24. In addition, changes in PV protein levels in the gerbil hippocampus were similar to immunohistochemical changes during normal aging: PV protein levels were significantly decreased with age by PM 6: Thereafter, PV protein levels were sustained by PM 24. These results suggest that PV immunoreactive interneurons were decreased in the hippocampus with age in gerbils.  相似文献   

11.
12.
Ionized calcium-binding adapter molecule 1 (iba-1) is specifically expressed in microglia and plays an important role in the regulation of the function of microglia. We observed chronological changes of iba-1-immunoreactive cells and iba-1 level in the gerbil hippocampal CA1 region after transient ischemia. Transient forebrain ischemia in gerbils was induced by the occlusion of bilateral common carotid arteries for 5 min. Immunohistochemical and Western blot analysis of iba-1 were performed in the gerbil ischemic hippocampus. In the sham-operated group, iba-1-immunoreactive cells were detected in the CA1 region. Thirty minutes after ischemia/reperfusion, iba-1 immunoreactivity significantly increased, and its immunoreactive cells were well ramified. Three hours after ischemia/reperfusion, iba-1 immunoreactivity and level decreased, and thereafter they increased again with time after ischemia/reperfusion. Three days after ischemia/reperfusion, iba-1-immunoreactive cells had well-ramified processes, which projected to the stratum pyramidale of the CA1 region. Seven days after ischemia/reperfusion, iba-1 immunoreactivity and level were highest in the CA1 region, whereas they significantly decreased in the CA1 region 10 days after ischemia/reperfusion. Iba-1-immunoreactive cells in the ischemic CA1 region were co-localized with OX-42, a microglia marker. In brief, iba-1-immunoreactive cells change morphologically and iba-1 immunoreactivity alters in the CA1 region with time after ischemia/reperfusion. These may be associated with the delayed neuronal death of CA1 pyramidal cells in the gerbil ischemic hippocampus.  相似文献   

13.
Kang  Tae-Cheon  Hwang  In Koo  Park  Seung-Kook  An  Sung-Jin  Yoon  Dae-Kun  Moon  Seung Myung  Lee  Yoon-Bok  Sohn  Heon-Soo  Cho  Sa Sun  Won  Moo Ho 《Brain Cell Biology》2001,30(12):945-955
We investigated changes of immunoreactivities of N-methyl-D-aspartate receptor (NR) and of excitatory amino acid carrier 1 (EAAC-1), the neuronal glutamate transporter, in the vulnerable CA1 area and the less vulnerable subiculum of the gerbil hippocampus at various times following transient forebrain ischemia. At 30 min after ischemia-reperfusion, the intensity of NR immunoreactivity increased markedly in neurons of CA1 and subiculum, particularly NR2A/B, while EAAC-1 immunoreactivity was reduced in CA1. At 3 hr after reperfusion, the density of NR1 immunoreactivity markedly decreased in CA1. In contrast EAAC-1 immunoreactivity increased in CA1 and in the subiculum. At 12 hr after reperfusion, the decrease of NR1 immunoreactivity was not detected whereas EAAC-1 immunoreactivities in the CA1 area were intensified. In the subiculum, both NR subunits immunoreactivities decreased significantly, in contrast to the maintenance of EAAC-1 immunoreactivity. At 24 hr after reperfusion, both NR2A/B and EAAC-1 immunoreactivities decreased markedly in CA1 and subiculum. We tentatively suggest that the increase of NR immunoreactivity in CA1 at early times after ischemia-reperfusion may increase the delayed neuronal death, and that the increase or maintenance of EAAC-1 immunoreactivity at early times after ischemia-reperfusion may be an important factor in survival of neurons.  相似文献   

14.
Calretinin (CR)-immunoreactive interneurons are well known as the interneuron specific interneurons in the hippocampus. CR-immunoreactive neurons form cellular network and regulate the activity of other GABAergic inhibitory interneurons in the hippocampus. In the present study, we investigated age-related changes in CR-immunoreactive neurons and protein levels in the gerbil hippocampus during normal aging. In all subregions of the gerbil hippocampus, the number of CR-immunoreactive neurons was significantly decreased in the postnatal month 6 (PM 6) group compared to that in the PM 1 group. Thereafter, CR-immunoreactive neurons were decreased with age. In addition, the number of CR-immunoreactive cells in the subgranular zone were significantly decreased in the PM 6 group. We also observed that CR protein levels were decreased gradually with age. These results indicate that both CR immunoreactivity and its protein level were decreased with age in the gerbil hippocampus during normal aging.  相似文献   

15.
Developmental changes in the distribution of brain-specific chondroitin sulfate proteoglycans, neurocan and phosphacan/RPTPzeta/beta, in the hippocampus of the Sprague-Dawley rat were examined using monoclonal antibodies 1G2 and 6B4. The 1G2 immunoreactivity was predominant in the neonatal hippocampus while the 6B4 immunoreactivity was predominant in the mature hippocampus. Moderate 1G2 immunoreactivity was detected in the dentate gyrus and subiculum immediately after birth. Immunoreactivity reached a peak on postnatal days 7-10 (P7-P10) when intense 1G2 labeling was present throughout the neuropil layers of the hippocampus except the mossy fiber tract. 6B4 immunoreactivity was limited in the stratum lacunosum moleculare of CA1 in the neonatal hippocampus. It gradually increased by P21 when diffuse 6B4 immunoreactivity was detected in the stratum oriens and radiatum of Ammon's horn, and in the hilus and inner one-third molecular layer of the dentate gyrus, while 1G2 immunoreactivity decreased after P21. In the adult hippocampus, moderate 6B4 immunoreactivity was present in the stratum oriens and radiatum of Ammon's horn, and in the hilus and inner one-third molecular layer of the dentate gyrus, but not in the mossy fiber tract. In addition, strong 6B4 labeling appeared around a subset of neurons after P21. The results suggest that neurocan may have a role in the development of neuronal organization, while phosphacan/RPTPzeta/beta may contribute to the maintenance and plasticity of synaptic structure and function. Furthermore, the absence of 1G2 and 6B4 immunoreactivities in the stratum lucidum suggests that neurocan and phosphacan/RPTPzeta/beta may function as a barrier for the extension of mossy fibers and provide an environment permissive for fasciculation of the mossy fibers.  相似文献   

16.
Walker MC  Ruiz A  Kullmann DM 《Neuron》2001,29(3):703-715
Mossy fibers are the sole excitatory projection from dentate gyrus granule cells to the hippocampus, where they release glutamate, dynorphin, and zinc. In addition, mossy fiber terminals show intense immunoreactivity for the inhibitory neurotransmitter GABA. Fast inhibitory transmission at mossy fiber synapses, however, has not previously been reported. Here, we show that electrical or chemical stimuli that recruit dentate granule cells elicit monosynaptic GABA(A) receptor-mediated synaptic signals in CA3 pyramidal neurons. These inhibitory signals satisfy the criteria that distinguish mossy fiber-CA3 synapses: high sensitivity to metabotropic glutamate receptor agonists, facilitation during repetitive stimulation, and NMDA receptor-independent long-term potentiation. GABAergic transmission from the dentate gyrus to CA3 has major implications not only for information flow into the hippocampus but also for developmental and pathological processes involving the hippocampus.  相似文献   

17.
In the present study, we investigated age-related changes of newborn neurons in the gerbil dentate gyrus using doublecortin (DCX), a marker of neuronal progenitors which differentiate into neurons in the brain. In the postnatal month 1 (PM 1) group, DCX immunoreactivity was detected in the subgranular zone of the dentate gyrus, but DCX immunoreactive neurons did not have fully developed processes. Thereafter, DCX immunoreactivity and its protein levels in the dentate gyrus were found to decrease with age. Between PM 3 and PM 18, DCX immunoreactive neuronal progenitors showed well-developed processes which projected to the granular layer of the dentate gyrus, but at PM 24, a few DCX immunoreactive neuronal progenitors were detected in the subgranular zone of the dentate gyrus. DCX protein level in the dentate gyrus at PM 1 was high, thereafter levels of DCX were decreased with time. The authors suggest that a decrease of DCX immunoreactivity and its protein level with age may be associated with aging processes in the hippocampal dentate gyrus.  相似文献   

18.
Ribosomal protein S3 (rpS3), a multi-functional protein, has been known to participate in DNA repair mechanism. In this study, we investigated changes in rpS3 immunoreactivity and its protein levels in the sub-regions of the gerbil hippocampus following subacute and chronic restraint stress. Serum corticosterone levels were increased in both the subacute and chronic-stress-groups compared to the control-group: the level in the subacute-stress-group was much higher than that in the chronic-stress-group. We could not find any neuronal damage in all the sub-regions of the hippocampus after both the subacute and chronic restraint stress. In the subacute-stress-group, rps3 immunoreactivity was not different compared to the control-group. However, rps3 immunoreactivity in the chronic-stress-group was decreased compared to the subacute-stress-group: especially, the immunoreactivity was markedly decreased in the pyramidal cells of the hippocampus proper (CA1-CA3 region) and granule cells of the dentate gyrus. In addition, western blot analysis also showed that rpS3 protein levels in the chronic-stress-group were significantly decreased compared to those in the subacute-stress-group. These findings indicate that chronic stress, not subacute stress, can decrease rpS3 immunoreactivity.  相似文献   

19.
Adrenalectomy (ADX) has been useful for a good in vivo model for apoptosis in the hippocampus by the absence of corticosteroids following ADX. In some neurodegenerative diseases, GABAergic neurons are more resistant to neuronal damage as compared with glutamatergic neurons. In the present study, we observed chronological changes in three GABA degradation enzymes, e.g., GABA transaminase (GABA-T), succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) immunoreactivity and protein levels in the gerbil hippocampal CA1 region after ADX. Changes in their immunoreactivities were distinct in the stratum pyramidale of the CA1 region. GABA-T immunoreactivity and protein level were significantly increased in the CA1 region 3 h after ADX, in contrast, SSAR and SSADH immunoreactivity and protein level were increased 12 h and 3–12 h, respectively, after ADX. These results suggest that the increases of GABA-T, SSADH and SSAR immunoreactivity and protein levels in the hippocampal CA1 region in ADX gerbils may be associated with the control of GABA levels in this region.  相似文献   

20.
A polyclonal antibody directed towards the last 73 amino acid residues of the rat type 1 cannabinoid (CB1) receptor strongly and exclusively labels a high molecular weight (between 160 and 200 kDa) form of the receptor in Western analysis. In contrast, a human CB1 polyclonal antibody identifies both monomeric CB1 as well as the high molecular weight form. The carboxy terminus (CT) antibody was also used in immunocytochemistry of rat hippocampal sections. Sections probed with CT antibody show intense staining of a meshwork of fibers and occasional interneurons of the stratum oriens, stratum pyramidal, and stratum radiatum of the CA1 and CA3 regions while mossy fibers and granule cells of the internal stratum appear unstained. These data provide evidence that CB1 likely exists as a dimer in vivo and that the carboxy end of the receptor may play a role in the assembly of the oligomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号