首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
4.
5.
Androgen ablation therapy is the most common strategy for suppressing prostate cancer progression; however, tumor cells eventually escape androgen dependence and progress to an androgen-independent phase. The androgen receptor (AR) plays a pivotal role in this transition. To address this transition mystery in prostate cancer, we established an androgen-independent prostate cancer cell line (LNCaPdcc), by long-term screening of LNCaP cells in androgen-deprived conditions, to investigate changes of molecular mechanisms before and after androgen withdrawal. We found that LNCaPdcc cells displayed a neuroendocrine morphology, less aggressive growth, and lower expression levels of cell cycle-related factors, although the cell cycle distribution was similar to parental LNCaP cells. Notably, higher protein expression of AR, phospho-Ser(81)-AR, and PSA in LNCaPdcc cells were observed. The nuclear distribution and protein stability of AR increased in LNCaPdcc cells. In addition, cell proliferation results exhibited the biphasic nature of the androgen (R1881) effect in two cell lines. On the other hand, LNCaPdcc cells expressed higher levels of Her2, phospho-Tyr(1221/1222)-Her2, ErbB3, and ErbB4 proteins than parental LNCaP cells. These two cell lines exhibited distinct responses to Her2 activation (by heregulin treatment) on Her2 phosphorylation and Her2 inhibition (by AG825 or Herceptin treatments) on proliferation. In addition, the Her2 inhibitor more effectively caused AR degradation and diminished AR Ser(81) phosphorylation in LNCaPdcc cells. Taken together, our data demonstrate that Her2 plays an important role in the support of AR protein stability in the transition of androgen requirement in prostate cancer cells. We hope these findings will provide novel insight into the treatment of hormone-refractory prostate cancer.  相似文献   

6.
7.
8.
9.
Epidermal growth factor (EGF) and its receptor (EGFR) are involved in hormone-refractory growth and poor prognosis of a subgroup of human prostate cancer. In this communication, we investigated the regulation of PSA by the EGFR signaling pathway using LNCaP C-81 prostate cancer cells. Administration of EGF stimulated the growth of LNCaP C-81 cells, however, PSA expression and secretion were suppressed. An EGFR inhibitor, AG1478, abrogated the PSA suppression effect by EGF, in concurrence with the suppression of tyro-phosphorylation levels of EGFR. Interestingly, the AR level was also decreased in EGF-treated LNCaP C-81 cells. Moreover, LY294002, but not PD98059, inhibited the PSA and AR suppression effect by EGF in concurrence with the suppression of phosphorylation levels of Akt. In conclusion, our results strongly suggest the existence of a novel androgen-independent PSA regulatory mechanism, i.e., the EGFR signaling pathway negatively regulates PSA expression which may be induced by the alteration of AR expression via the PI3K-Akt pathway in LNCaP C-81 cells.  相似文献   

10.
11.
The purpose of this research was to investigate the role of Vav3 oncogene in human prostate cancer. We found that expression of Vav3 was significantly elevated in androgen-independent LNCaP-AI cells in comparison with that in their androgen-dependent counterparts, LNCaP cells. Vav3 expression was also detected in other human prostate cancer cell lines (PC-3, DU145, and 22Rv1) and, by immunohistochemistry analysis, was detected in 32% (26 of 82) of surgical specimens of human prostate cancer. Knockdown expression of Vav3 by small interfering RNA inhibited growth of both androgen-dependent LNCaP and androgen-independent LNCaP-AI cells. In contrast, overexpression of Vav3 promoted androgen-independent growth of LNCaP cells induced by epidermal growth factor. Overexpression of Vav3 enhanced androgen receptor (AR) activity regardless of the presence or absence of androgen and stimulated the promoters of AR target genes. These effects of Vav3 could be attenuated by either phosphatidylinositol 3-kinase (PI3K) inhibitors or dominant-negative Akt and were enhanced by cotransfection of PI3K. Moreover, phosphorylation of Akt was elevated in LNCaP cells overexpressing Vav3, which could be blocked by PI3K inhibitors. Finally, we ascertained that the DH domain of Vav3 was responsible for activation of AR. Taken together, our data show that overexpression of Vav3, through the PI3K-Akt pathway, inappropriately activates AR signaling axis and stimulates cell growth in prostate cancer cells. These findings suggest that Vav3 overexpression may be involved in prostate cancer development and progression.  相似文献   

12.
13.
14.
The androgen receptor (AR) signaling pathway plays a crucial role in the development and growth of prostate malignancies. Regulation of AR homeostasis in prostate tumorigenesis has not yet been fully characterized. In this study, we demonstrate that p21-activated kinase 6 (PAK6) inhibits prostate tumorigenesis by regulating AR homeostasis. First, we demonstrated that in normal prostate epithelium, AR co-localizes with PAK6 in the cytoplasm and translocates into the nucleus in malignant prostate. Furthermore, AR phosphorylation at Ser-578 by PAK6 promotes AR-E3 ligase murine double minute-2 (Mdm2) association, causing AR degradation upon androgen stimuli. We also showed that PAK6 phosphorylates Mdm2 on Thr-158 and Ser-186, which is critical for AR ubiquitin-mediated degradation. Moreover, we found that Thr-158 collaborates with Ser-186 for AR-Mdm2 association and AR ubiquitin-mediated degradation as it facilitates PAK6-mediated AR homeostasis. PAK6 knockdown promotes prostate tumor growth in vivo. Interestingly, we found a strong inverse correlation between PAK6 and AR expression in the cytoplasm of prostate cancer cells. These observations indicate that PAK6 may be important for the maintenance of androgen-induced AR signaling homeostasis and in prostate malignancy, as well as being a possible new therapeutic target for AR-positive and hormone-sensitive prostate cancer.  相似文献   

15.
16.
17.
18.
19.
Prostate cancer is the most frequently diagnosed male malignancy. The normal prostate development and prostate cancer progression are mediated by androgen receptor (AR). Recently, the roles of cyclin-dependent kinase 5 (Cdk5) and its activator, p35, in cancer biology are explored one after another. We have previously demonstrated that Cdk5 may regulate proliferation of thyroid cancer cells. In addition, we also identify that Cdk5 overactivation can be triggered by drug treatments and leads to apoptosis of prostate cancer cells. The aim of this study is to investigate how Cdk5 regulates AR activation and growth of prostate cancer cells. At first, the data show that Cdk5 enables phosphorylation of AR at Ser-81 site through direct biochemical interaction and, therefore, results in the stabilization of AR proteins. The Cdk5-dependent AR stabilization causes accumulation of AR proteins and subsequent activation. Besides, the positive regulations of Cdk5-AR on cell growth are also determined in vitro and in vivo. S81A mutant of AR diminishes its interaction with Cdk5, reduces its nuclear localization, fails to stabilize its protein level, and therefore, decreases prostate cancer cell proliferation. Prostate carcinoma specimens collected from 177 AR-positive patients indicate the significant correlations between the protein levels of AR and Cdk5 or p35. These findings demonstrate that Cdk5 is an important modulator of AR and contributes to prostate cancer growth. Therefore, Cdk5-p35 may be suggested as diagnostic and therapeutic targets for prostate cancer in the near future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号