首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Androgen and androgen receptor (AR) are involved in growth of normal prostate and development of prostatic diseases including prostate cancer. Androgen deprivation therapy is used for treating advanced prostate cancer. This therapeutic approach focuses on suppressing the accumulation of potent androgens, testosterone and 5alpha-dihydrotestosterone (5alpha-DHT), or inactivating the AR. Unfortunately, the majority of patients with prostate cancer eventually advance to androgen-independent states and no longer respond to the therapy. In addition to the potent androgens, 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), reduced from 5alpha-DHT through 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs), activated signaling may represent a novel pathway responsible for the progression to androgen-independent prostate cancer. Androgen sensitive human prostate cancer LNCaP cells were used to compare 5alpha-DHT and 3alpha-diol activated androgenic effects. In contrast to 5alpha-DHT, 3alpha-diol regulated unique patterns of beta-catenin and Akt expression as well as Akt phosphorylation in parental and in AR-silenced LNCaP cells. More significantly, 3alpha-diol, but not 5alpha-DHT, supported AR-silenced LNCaP cells and AR negative prostate cancer PC-3 cell proliferation. 3alpha-diol-activated androgenic effects in prostate cells cannot be attributed to the accumulation of 5alpha-DHT, since 5alpha-DHT formation was not detected following 3alpha-diol administration. Potential accumulation of 3alpha-diol, as a result of elevated 3alpha-HSD expression in cancerous prostate, may continue to support prostate cancer growth in the presence of androgen deprivation. Future therapeutic strategies for treating advanced prostate cancer might need to target reductive 3alpha-HSD to block intraprostatic 3alpha-diol accumulation.  相似文献   

3.
4.
Prostate cancer is dependent on circulating testosterone in its early stages and is treatable with radiation and surgery. However, recurrent prostate tumors advance to an androgen-independent state in which they progress in the absence of circulating testosterone, leading to metastasis and death. During the development of androgen independence, prostate cancer cells are known to increase intracellular testosterone synthesis, which maintains cancer cell growth in the absence of significant amounts of circulating testosterone. Overexpression of the androgen receptor (AR) occurs in androgen-independent prostate cancer and has been proposed as another mechanism promoting the development of androgen independence. The LNCaP-AR cell line is engineered to overexpress AR but is otherwise similar to the widely studied LNCaP cell line. We have previously shown that pomegranate extracts inhibit both androgen-dependent and androgen-independent prostate cancer cell growth. In this study, we examined the effects of pomegranate polyphenols, ellagitannin-rich extract and whole juice extract on the expression of genes for key androgen-synthesizing enzymes and the AR. We measured expression of the HSD3B2 (3beta-hydroxysteroid dehydrogenase type 2), AKR1C3 (aldo-keto reductase family 1 member C3) and SRD5A1 (steroid 5alpha reductase type 1) genes for the respective androgen-synthesizing enzymes in LNCaP, LNCaP-AR and DU-145 human prostate cancer cells. A twofold suppression of gene expression was considered statistically significant. Pomegranate polyphenols inhibited gene expression and AR most consistently in the LNCaP-AR cell line (P=.05). Therefore, inhibition by pomegranate polyphenols of gene expression involved in androgen-synthesizing enzymes and the AR may be of particular importance in androgen-independent prostate cancer cells and the subset of human prostate cancers where AR is up-regulated.  相似文献   

5.
The purpose of this research was to investigate the role of Vav3 oncogene in human prostate cancer. We found that expression of Vav3 was significantly elevated in androgen-independent LNCaP-AI cells in comparison with that in their androgen-dependent counterparts, LNCaP cells. Vav3 expression was also detected in other human prostate cancer cell lines (PC-3, DU145, and 22Rv1) and, by immunohistochemistry analysis, was detected in 32% (26 of 82) of surgical specimens of human prostate cancer. Knockdown expression of Vav3 by small interfering RNA inhibited growth of both androgen-dependent LNCaP and androgen-independent LNCaP-AI cells. In contrast, overexpression of Vav3 promoted androgen-independent growth of LNCaP cells induced by epidermal growth factor. Overexpression of Vav3 enhanced androgen receptor (AR) activity regardless of the presence or absence of androgen and stimulated the promoters of AR target genes. These effects of Vav3 could be attenuated by either phosphatidylinositol 3-kinase (PI3K) inhibitors or dominant-negative Akt and were enhanced by cotransfection of PI3K. Moreover, phosphorylation of Akt was elevated in LNCaP cells overexpressing Vav3, which could be blocked by PI3K inhibitors. Finally, we ascertained that the DH domain of Vav3 was responsible for activation of AR. Taken together, our data show that overexpression of Vav3, through the PI3K-Akt pathway, inappropriately activates AR signaling axis and stimulates cell growth in prostate cancer cells. These findings suggest that Vav3 overexpression may be involved in prostate cancer development and progression.  相似文献   

6.
Androgen-ablation is a most commonly prescribed treatment for metastatic prostate cancer but it is not curative. Development of new strategies for treatment of prostate cancer is limited partly by a lack of full understanding of the mechanism by which androgen regulates prostate cancer cell proliferation. This is due, mainly, to the limitations in currently available experimental models to distinguish androgen/androgen receptor (AR)-induced events specific to proliferation from those that are required for cell viability. We have, therefore, developed an experimental model system in which both androgen-sensitive (LNCaP) and androgen-independent (DU145) prostate cancer cells can be reversibly blocked in G(0)/G(1) phase of cell cycle by isoleucine deprivation without affecting their viability. Pulse-labeling studies with (3)H-thymidine indicated that isoleucine-deprivation caused LNCaP and DU145 cells to arrest at a point in G(1) phase which is 12-15 and 6-8 h, respectively, before the start of S phase and that their progression into S phase was dependent on serum factors. Furthermore, LNCaP, but not DU145, cells required AR activity for progression from G(1) into S phase. Western blot analysis of the cell extracts prepared at regular intervals following release from isoleucine-block revealed remarkable differences in the expression of cyclin E, p21(Cip1), p27(Kip1), and Rb at the protein level between LNCaP and DU145 cells during progression from G(1) into S phase. However, in both cell types Cdk-2 activity associated with cyclin E and cyclin A showed an increase only when the cells transited from G(1) into S phase. These observations were further corroborated by studies using exponentially growing cells that were enriched in specific phases of the cell cycle by centrifugal elutriation. These studies demonstrate usefulness of the isoleucine-deprivation method for synchronization of androgen-sensitive and androgen-independent prostate cancer cells, and for examining the role of androgen and AR in progression of androgen-sensitive prostate cancer cells from G(1) into S phase.  相似文献   

7.
8.
9.
The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgen sensitivity.  相似文献   

10.
We investigated the effects of androgen receptor (AR) down regulation with a small interference RNA molecule (siRNA_AR(start)) on androgen sensitive LNCaP and androgen independent LNCaPabl prostate cancer cells, the latter representing an in vitro model for the development of therapy resistance in prostate cancer. Although LNCaPabl cells express increased levels of AR in comparison with androgen sensitive LNCaP cells, the protein was significantly down regulated in response to siRNA_AR(start) treatment. This AR down regulation resulted in a marked cell growth inhibition in both cell lines. By contrast, DU-145 prostate cancer cells, which lack AR expression, were not inhibited by the siRNA_AR(start). In consequence to AR down regulation, both cell lines, LNCaP and LNCaPabl, shared a highly similar gene expression profile in terms of major changes in cell cycle regulatory genes. The cell cycle inhibitor p21(Waf1/Cip1) as well as cyclin D1 were significantly up regulated by siRNA_AR(start) treatment, considering a switch in cyclin expression towards cell cycle retardation. Control molecules had moderate effects on cell proliferation and gene expression, respectively. In summary, we found that AR inhibition with siRNA induces cell growth retardation in androgen sensitive as well as in androgen independent prostate cancer cells and thus may represent an interesting approach to combat hormone-refractory prostate cancer.  相似文献   

11.
Prostate cells are dependent on androgen for proliferation, but during tumor progression prostate cancer cells achieve independence from the androgen requirement. We report that androgen withdrawal fails to inhibit cell cycle progression or influence the expression of cyclin-dependent kinase (CDK)/cyclins in androgen-independent prostate cancer cells, indicating that these cells signal for cell cycle progression in the absence of androgen. However, phosphorylation of the retinoblastoma tumor suppressor protein (RB) is still required for G1-S progression in androgen-independent cells, since the expression of constitutively active RB (PSM-RB) or p16ink4a caused cell cycle arrest and mimicked the effects of androgen withdrawal on downstream targets in androgen-dependent LNCaP cells. Since Ras is known to mediate mitogenic signaling to RB, we hypothesized that active V12Ras would induce androgen-independent cell cycle progression in LNCaP cells. Although V12Ras was able to stimulate ERK phosphorylation and induce cyclin D1 expression in the absence of androgen, it was not sufficient to promote androgen-independent cell cycle progression. Similarly, ectopic expression of CDK4/cyclin D1, which stimulated RB phosphorylation in the presence of androgen, was incapable of inactivating RB or driving cell cycle progression in the absence of androgen. We show that androgen regulates both CDK4/cyclin D1 and CDK2 complexes to inactivate RB and initiate cell cycle progression. Together, these data show that androgen independence is achieved via deregulation of the androgen to RB signal, and that this signal can only be partially initiated by the Ras pathway in androgen-dependent cells.  相似文献   

12.
Androgen has been shown to promote the proliferation of prostate cancer through the action of the androgen receptor (AR). Mutation (T877A) of the AR gene found in an androgen-sensitive prostate cancer cell line, LNCaP, has been postulated to be involved in hypersensitivity and loss of specificity for androgen. In the present study, trafficking of AR and AR (T877A) in living prostate and non-prostate cancer cell lines under high and low concentrations of androgen and antiandrogen was investigated by tagging green fluorescent protein (GFP) to the receptors. In the presence of a high concentration of androgen, AR-GFP localized in the nucleus by forming discrete clusters in all cell lines. AR (T877A)-GFP was also translocated to the nucleus in LNCaP and COS-1 cells by the addition of a high concentration of androgen. In contrast, in the presence of a low concentration of androgen, the translocation of AR-GFP and AR (T877A)-GFP was observed in LNCaP cells, but not in COS-1 cells. Upon the addition of antiandrogen, AR-GFP was translocated to the nucleus but did not form subnuclear foci in both COS-1 and LNCaP cells, whereas AR (T877A)-GFP in both cells was translocated to the nucleus with subnuclear foci. The present study demonstrates the differential response of nuclear trafficking of AR and its mutant in prostate cancer cell lines and COS cells, and the subcellular and subnuclear compartmentalization provide important information on the sensitivity of the AR mutation.  相似文献   

13.
14.
The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.  相似文献   

15.
Kruppel-like factors (KLFs) play an important role in many biological processes including cell proliferation, differentiation and development. Our study showed that the level of KLF9 is lower in PCa cell lines compared to a benign prostate cell line; the androgen-independent cell line PC3 expresses significantly lower KLF9 than the androgen-dependent cell line, LNCaP. Forced overexpression of KLF9 suppressed cell growth, colony formation, and induced cell apoptosis in LNCaP cells. We also found that KLF9 expression was induced in response to apoptosis caused by flutamide, and further addition of dihydrotestosterone antagonized the action of flutamide and significantly decreased KLF9 expression. Furthermore, activation of the androgen receptor (AR) was inhibited by the overexpression of KLF9. Our research shows that KLF9 is lower in androgen-independent cell lines than in androgen-dependent cell lines; Overexpression of KLF9 dramatically suppresses the proliferation, anchorage-independent growth, and induces apoptosis in androgen-dependent cells; KLF9 inhibition on prostate cancer cell growth may be acting through the AR pathway. Our results therefore suggest that KLF9 may play a significant role in the transition from androgen-dependent to androgen-independent prostate cancer and is a potential target of prevention and therapy.  相似文献   

16.
17.
Androgen-ablation therapy is an effective method for treating prostate cancer. However, prostate tumors that survive long-term androgen-ablation therapy are classified as androgen-independent as they proliferate in the absence of androgens, and they tend to be enriched for neuroendocrine (NE) cells. Androgen withdrawal causes androgen-dependent prostate cancer cells to adopt a pronounced NE phenotype, suggesting that androgen receptor (AR) represses an intrinsic NE transdifferentiation process in prostate cancer cells. In this report we show that short interfering RNA-induced AR silencing induced a NE phenotype that manifested itself in the growth of dendritic-like processes in both the androgen-dependent LNCaP and androgen-independent LNCaP-AI human prostate cancer cells. Western blot analysis revealed that neuronal-specific enolase, a marker of the neuronal lineage, was increased by AR knockdown in LNCaP cells. The expression levels of the neuronal-specific cytoskeletal proteins beta-tubulin III, nestin, and glial acidic fibrillary protein were also characterized in AR knockdown cells. Most interestingly, AR silencing induced beta-tubulin III expression in LNCaP cells, while AR knockdown increased glial acidic fibrillary protein levels in both LNCaP and LNCaP-AI cells. Lastly, AR silencing reduced the proliferative capacity of LNCaP and LNCaP-AI cells. Our data demonstrate that AR actively represses an intrinsic NE transdifferentiation process in androgen-responsive prostate cancer cells and suggest a potential link between AR inactivation and the increased frequency of NE cells in androgen-independent tumors.  相似文献   

18.
The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.  相似文献   

19.
Prostate cancer, which develops due to androgen and is initially responsive to androgen deprivation therapy, often comes to acquire androgen deprivation therapy resistance in short order. We investigated the role of androgen receptor (AR) protein in an androgen-independent prostate cancer cell line using AR ligands and AR siRNA. Although the androgen-independent cell line scarcely responded to AR ligands, their growth was attenuated by ablation of AR protein by siRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号