首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大豆类钙调磷酸酶B亚基GmCBL1互作候选蛋白的筛选   总被引:2,自引:0,他引:2  
Ca2+是非生物胁迫信号转导途径中的重要信号分子,植物类钙调磷酸酶B亚基蛋白(CBL,calcineurin B-like proteins)是一类重要的钙信号受体蛋白,主要通过与其他蛋白的特异结合传递信号,使植物形成对非生物胁迫的响应。本实验室已经获得大豆Gm CBL1基因,功能鉴定显示Gm CBL1增强了转基因拟南芥对非生物胁迫的耐性。为了进一步研究Gm CBL1的作用机理,本研究构建诱饵载体p GBKT7::Gm CBL1,利用酵母双杂交技术筛选大豆Gm CBL1的互作蛋白。通过对筛选获得的106个蛋白基因测序和Blast比对分析,并根据其可能的生理功能对这些候选蛋白归类,整理得到4类蛋白:能量代谢相关蛋白、修饰蛋白、防御蛋白、钙信号转导相关蛋白。筛选得到候选蛋白的功能预测初步表明,大豆Gm CBL1参与多条信号途径,为进一步研究探索大豆CBL介导的抗逆信号转导途径奠定了基础。  相似文献   

2.
Abiotic and biotic stresses are the major factors that negatively impact plant growth. In response to abiotic environmental stresses such as drought, plants generate resistance responses through abscisic acid (ABA) signal transduction. In addition to the major role of ABA in abiotic stress signaling, ABA signaling was reported to downregulate biotic stress signaling. Conversely recent findings provide evidence that initial activation of plant immune signaling inhibits subsequent ABA signal transduction. Stimulation of effector-triggered disease response can interfere with ABA signal transduction via modulation of internal calcium-dependent signaling pathways. This review overviews the interactions of abiotic and biotic stress signal transduction and the mechanism through which stress surveillance system operates to generate the most efficient resistant traits against various stress condition.  相似文献   

3.
Plant cell organelle proteomics in response to abiotic stress   总被引:2,自引:0,他引:2  
Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.  相似文献   

4.
Zhao XC  Schaller GE 《FEBS letters》2004,562(1-3):189-192
In hormone perception, varying the concentrations of hormone, receptor, or downstream signaling elements can modulate signal transduction. Previous research has demonstrated that ethylene biosynthesis in plants is regulated by abiotic factors. Here we report that exposure of Arabidopsis plants to NaCl reduced expression of the ethylene receptor ETR1. The change in gene expression was reflected at the protein level based on immunoblot analysis. Further analysis supports a general effect of osmotic stress upon the expression level of ETR1. The reduction in ETR1 levels should cause increased sensitivity of the plant to ethylene. These results suggest that plant responses to abiotic stress are modulated by changes in the expression level of ethylene receptors.  相似文献   

5.
6.
Adverse variations of abiotic environmental cues that deviate from an optimal range impose stresses to plants. Abiotic stresses severely impede plant physiology and development. Consequently, such stresses dramatically reduce crop yield and negatively impact on ecosystem stability and composition. Physical components of abiotic stresses can be, for example, suboptimal temperature and osmotic perturbations, while representative chemical facets of abiotic stresses can be toxic ions or suboptimal nutrient availability. The sheer complexity of abiotic stresses causes a multitude of diverse components and mechanisms for their sensing and signal transduction. Ca2+, as a versatile second messenger, plays multifaceted roles in almost all abiotic stress responses in that, for a certain abiotic stress, Ca2+ is not only reciprocally connected with its perception, but also multifunctionally ensures subsequent signal transduction. Here, we will focus on salt/osmotic stress and responses to altered nutrient availability as model cases to detail novel insights into the identity of components that link stress perception to Ca2+ signal formation as well as on new insights into mechanisms of Ca2+ signal implementation. Finally, we will deduce emerging conceptual consequences of these novel insights and outline arising avenues of future research on the role of Ca2+ signaling in abiotic stress responses in plants.  相似文献   

7.
Calcium is a crucial messenger in many growth and developmental processes in plants. The central mechanism governing how plant cells perceive and respond to environmental stimuli is calcium signal transduction, a process through which cellular calcium signals are recognized, decoded, and transmitted to elicit downstream responses. In the initial decoding of calcium signals, Ca2+ sensor proteins that bind Ca2+ and activate downstream signaling components are implicated, thereby regulating specific physiological and biochemical processes. After calcineurin B-like proteins (CBLs) sense these Ca2+ signatures, these proteins interact selectively with CBL-interacting protein kinases (CIPKs), thereby forming CBL/CIPK complexes, which are involved in decoding calcium signals. Therefore, specificity, diversity, and complexity are the main characteristics of the CBL-CIPK signaling system. However, additional CBLs, CIPKs, and CBL/CIPK complexes remain to be identified in plants, and the specific functions of their abiotic and biotic stress signaling will need to be further dissected. Therefore, a much-needed synthesis of recent findings is important to further the study of CBL-CIPK signaling systems. Here, we review the structure of CBLs and CIPKs, discuss the current knowledge of CBL–CIPK pathways that decode calcium signals in Arabidopsis, and link plant responses to a variety of environmental stresses with specific CBL/CIPK complexes. This will provide a foundation for future research on genetically engineered resistant plants with enhanced tolerance to various environmental stresses.  相似文献   

8.
Chemical signaling under abiotic stress environment in plants   总被引:1,自引:0,他引:1  
Many chemicals are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery and regulating various transporters/pumps and biochemical reactions. These chemicals include calcium (Ca2+), cyclic nucleotides, polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), salicylic acid (SA) and polyamines. Ca2+ is one of the very important ubiquitous second messengers in signal transduction pathways and usually its concentration increases in response to the stimuli including stress signals. Many Ca2+ sensors detect the Ca2+ signals and direct them to downstream signaling pathways by binding and activating diverse targets. cAMP or cGMP protects the cell with ion toxicity. Phosphoinositides are known to be involved both in transmission of signal across the plasma membrane and in intracellular signaling. NO activates various defense genes and acts as a developmental regulator in plants. Sugars affect the expression of many genes involved in photosynthesis, glycolysis, nitrogen metabolism, sucrose and starch metabolism, defense mechanisms and cell cycle regulation. ABA, JA, SA and polyamines are also involved in many stress responses. Cross-talk between these chemical signaling pathways is very common in plant responses to abiotic and bitotic factors. In this article we have described the role of these chemicals in initiating signaling under stress conditions mainly the abiotic stress.Key words: ABA, abiotic stress, Ca2+ binding proteins, calcium signaling, cyclic nucleotides, nitric oxide, phosphoinositides signaling, signal transduction, sugar signaling  相似文献   

9.
Protein phosphatases are the vital regulatory components of various signal transduction pathways in eukaryotes. Signaling pathways triggered during stress and development have been regulated by different classes of protein phosphatases in plants. Recently, genome-wide expressional analysis in Arabidopsis and crop plant such as rice revealed differential expression pattern for several protein phosphatases under different abiotic stresses, in various tissues and at different developmental stages. This expression pattern could be extrapolated to the possible function of protein phosphatases in abiotic stress signaling and tolerance, and during plant development. Here, we discuss organisation and expression patterns of members of the protein phosphatase gene family, and their potential functional role in plants.  相似文献   

10.
An insight into the drought stress induced alterations in plants   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
In plants, cell signaling connects the environmental input to the intracellular responses in plants. Exogenous signals play an important role in cell metabolism leading to growth and defense responses. Some of these stimuli induce anatomical and physiological modifications that are generally modulated by gene expression. SERK belongs to a small family of genes that code for a transmembrane protein involved in signal transduction and that have been strongly associated with somatic embryogenesis and apomixis in a number of plant species. Recent studies corroborate its role in somatic embryogenesis and suggest a broader range of functions in plant response to biotic and abiotic stimuli. This mini-review aims to present new data on SERK and discuss its involvement in plant development as well as in response to environmental stress.Key words: SERK, fungus tolerance, environmental stress, brassinosteroids, SAR  相似文献   

13.
In nature, plants are constantly affected by adverse conditions. Unlike animals, plants can resist these adverse stresses only by insisting on their original positions. Stress can be divided into biological stress and abiotic stress, abiotic stress directly affects the growth, development and yield of plants, it spans all developmental stages from seed germination to senescence. In order to adapt to changing environment, plants have evolved well-developed mechanisms that help to perceive the stress signals and enable optimal growth response. Salicylic acid (SA) is an important endogenous signal molecule in plants, which not only regulate some plant growth and development processes, but also plays an important part in plant stress resistance. Much work about salicylic acid has been done on the immunity of plants to pathogens, and the synthesis and signal transduction of SA are clearly understood, its function in plant growth, development and abiotic stress is also well learned, we systemically summarized the multiple function of SA signal in non-pathogen-related response, such review should help us understand the common but essential function of SA signal in modulating plant growth, development and abiotic stress.  相似文献   

14.
植物质膜蛋白质组的逆境应答研究进展   总被引:1,自引:0,他引:1  
邱丽丽  赵琪  张玉红 《植物学报》2017,52(2):128-147
质膜作为原生质体与外界环境的屏障, 除了维持正常的细胞内稳态和营养状况, 还参与感知和应答各种环境胁迫。近年来, 植物质膜蛋白质组学研究为深入分析植物应答不同生物和非生物胁迫的分子机制提供了重要信息, 已经报道了模式植物拟南芥(Arabidopsis thaliana)和水稻(Oryza sativa)等10种植物质膜应对生物胁迫(白叶枯病菌(Xanthomonas oryzae pv. oryzae)感染)与非生物胁迫(冷、盐、水淹、渗透、高pH值、Fe缺乏及过量、氮素、脱落酸、壳聚糖和壳寡糖)过程的蛋白质丰度模式变化。通过整合分析植物质膜响应逆境的蛋白质组学研究结果, 揭示了质膜在植物应答逆境胁迫过程中的重要作用。植物通过调节转运蛋白、通道蛋白及膜泡运输相关蛋白的丰度变化促进细胞内外的信号传递、物质交换与运输; 同时利用膜相关的G蛋白、Ca2+信号、磷酸肌醇信号途径及BR信号途径等多种信号通路, 通过蛋白质可逆磷酸化作用感知和传递胁迫信号, 调节植物抵御胁迫。研究结果为从蛋白质水平认识质膜逆境应答分子调控机制提供了新线索。  相似文献   

15.
Depending on the stress type, plants activate various signal transduction pathways inducing the optimum defense process. This review is devoted to jasmonate (JA) dependent signaling involved in plant defense against biotic and abiotic stresses, including those determined by wounding, necrotrophic pathogens, pests, and herbivores. The sequence of major events of JA signaling is discussed. It is noted that JA signaling in plants is incorporated into a complex signaling network.  相似文献   

16.
The study of abiotic stress response of plants is important because they have to cope with environmental changes to survive. The plant genomes have evolved to meet environmental challenges. Salt, temperature, and drought are the main abiotic stresses. The tolerance and response to stress vary differently in plants. The idea was to analyze the genes showing differential expression under abiotic stresses. There are many pathways connecting the perception of external stimuli to cellular responses. In plants, these pathways play an important role in the transduction of abiotic stresses. In the present study, the gene expression data have been analyzed for their involvement in different steps of signaling pathways. The conserved genes were analyzed for their role in each pathway. The functional annotations of these genes and their response under abiotic stresses in other plant species were also studied. The enzymes of signal pathways, showing similarity with conserved genes, were analyzed for their role in different abiotic stresses. Our findings will help to understand the expression of genes in response to various abiotic stresses. These genes may be used to study the response of different abiotic stresses in other plant species and the molecular basis of stress tolerance.  相似文献   

17.
Phenylpropanoids are secondary metabolites produced by plants. They, by differential expression, are involved in responses to biotic and abiotic stresses and confer plant plasticity. In addition, they are synthesized under normal conditions during the fruit-ripening process. Therefore, the understanding of the mechanics involved in the accumulation of these compounds in plants is of extreme importance for the development of plants with greater resistance and tolerance to biotic and abiotic stresses, and plants with greater functional potential. There is evidence that one of the pathways of the induction of phenylpropanoids is dependent on abscisic acid (ABA) and it is generated by a signaling cascade involving calcium (Ca2+) and Ca2+-dependent protein kinases (CDPKs). Plants have several Ca2+ binding proteins that act as cellular sensors and represent the first points of signal transduction. CDPKs are mono-molecular Ca2+-sensor/kinase-effector proteins, which perceive Ca2+ signals and translate them into protein phosphorylation and thus represent an ideal tool for signal transduction. However, the mechanisms involved in the ABA–CDPK–phenylpropanoids crosstalk under stress conditions and during fruit ripening remains uncertain. Therefore, this review seeks to surface a new line of evidence as an attempt to understand the manner in which the induction of phenylpropanoids occurs in plants.  相似文献   

18.
姜骋  张曦  田晴  李莉 《植物研究》2020,40(4):583-592
克隆白桦BpbHLH112基因的编码序列,并进行生物信息学分析。通过实时荧光定量PCR技术分析该基因在不同胁迫处理下的表达模式,进一步克隆了BpbHLH112基因上游1 446 bp的启动子区域,序列分析表明,该区域含有多个逆境响应、激素响应以及信号转导等相关元件,通过构建BpbHLH112启动子片段融合GUS报告基因的表达载体并进行烟草瞬时转化,分析在不同胁迫处理条件下BpbHLH112启动子驱动GUS基因表达的活性,结果表明BpbHLH112启动子的表达能够被一些逆境胁迫因子诱导,本研究结果为深入研究BpbHLH112调控白桦应对非生物胁迫作用的分子机理提供了理论依据。  相似文献   

19.
20.
Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants.Key words: abiotic stress, cross talk, mitogen-activated protein kinases, heat map, MAPK signaling, signal transduction, stress signaling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号