首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coarse woody debris supports large numbers of saproxylic fungal species. However, most of the current knowledge comes from Scandinavia and studies relating the effect of stand or log characteristics on the diversity and composition of decomposer fungi have not been conducted in Northeastern Canada. Logs from five tree species were sampled along a decomposition gradient in nine stands representing three successional stages of the boreal mixed forest of Northwestern Quebec, Canada. Using a molecular fingerprinting technique, we assessed fungal community Shannon–Weaver diversity index, richness, and composition. We used linear mixed models and multivariate analyses to link changes in fungal communities to log and stand characteristics. We found a total of 33 operational taxonomic units (OTUs) including an indicator species for balsam fir (similar to Athelia sp.) and one found only in aspen stands (similar to Calocera cornea). Spruce logs supported the highest fungal Shannon–Weaver diversity index and OTU number. Our results support the hypothesis that log species influences fungal richness and diversity. However, log decay class does not. Stand composition, volume of coarse woody debris, and log chemical composition were all involved in structuring fungal communities. Maintaining the diversity of wood-decomposing communities therefore requires the presence of dead wood from diverse log species.  相似文献   

2.
The spatial distribution of basidiocarps provides much information on the dispersal abilities, habitat preferences, and inter- and intraspecific interactions of aphyllophoraceous fungi. To reveal the spatial distribution and resource utilization patterns of aphyllophoraceous fungi in Malaysia, we conducted field observations in a primary forest in 2006 and analyzed the relationships between the abundance of eight dominant fungal species and various environmental factors. The topographical characteristics were significantly patchily distributed at the 100-m scale, whereas woody debris and most fungal species were distributed randomly. Although the dominant fungal species differed among the decay classes and diameters of the woody debris, the abundance of a few dominant species was significantly correlated with environmental factors. Although the latter factors might affect the spatial distribution of these fungi, the effects appear to be so small that they would not create an aggregated distribution at a few 100-m scales.  相似文献   

3.
4.
Woody debris (WD), including coarse woody debris (CWD) and fine woody debris (FWD), is an essential structural and functional component of many ecosystems, particularly in montane forests. CWD is considered to be the major part in forest WD and it is primarily composed of logs, snags, stumps and large branches, while FWD mainly consists of small twigs. Attributes of dead woody material may change in accordance with trends in stand dynamics. The primary forest (primary montane moist evergreen broad-leaved forest) in Ailao Mountain National Nature Reserve (NNR) preserves the largest tract of natural vegetation in China. The Alnus nepalensis (D. Don) association, Populus bonatii (Levl.) association and secondary Lithocarpus association represent the secondary and chronological types following human disturbance by fires and logging under different intensity. The mass and composition of coarse woody debris (CWD, ≥10 cm in diameter) and fine woody debris (FWD, 2.5–10 cm in diameter) were inventoried in a primary forest and its three secondary counterparts. Estimates of total mass of woody debris across secondary types to primary forest ranged from 2.4 to 74.9 Mg ha−1. The lowest value was found in the A. nepalensis association and the highest values were in the primary forest of which logs are the considerable differences. The ratios of CWD to FWD were low in the secondary types (about 1–4) but high in the primary forest (above 15). Our results suggested that for the recovery of woody debris in the secondary forest, it might last longer than the age of the oldest successional stage studied. Yang Lipan and Ma Wenzhang contributed equally to this work.  相似文献   

5.
To maintain biodiversity in managed, boreal forest in Scandinavia, aspen trees (Populus tremula) are often retained at clearcutting. In this study, the habitat availability for beetles associated with aspen coarse woody debris (CWD) was predicted for forests and clearcuts with a model of CWD dynamics. Habitat requirements of eight beetle species (Agathidium bicolor, Cerylon ferrugineum, Cyphaea curtula, Endomychus coccineus, Homalota plana, Mycetophagus fulvicollis, Ptilinus fuscus and Xylotrechus rusticus) were obtained from their occurrence patterns in relation to characteristics of CWD objects in forest and on clearcuts in a study landscape in central Sweden. Three species were more frequent in forest and three at clearcuts. Five species increased with increasing girth of the CWD. Three were more frequent on standing CWD, and two on lying CWD. From the same study area, we also obtained field data on the recruitment of CWD (i.e., tree mortality) and amounts of different types of CWD. Annual tree mortality of aspen was higher for recent clearcuts (6.3%) compared with older clearcuts (1.1%). For all species, the habitat availability was higher on clearcuts, because enhanced tree mortality increased the amount of recently dead CWD. As a conclusion, green-tree retention of aspen is a conservation effort that is beneficial for species associated with aspen CWD.  相似文献   

6.
Abstract

The fundamental ecological significance of deadwood decomposition in forests has been highlighted in several reviews, some conclusions regarding silviculture being drawn. Old‐growth forests are natural centres of biodiversity. Saproxylic fungi and beetles, which are vital components of these ecosystems, occupy a variety of spatial and trophic niches. Fungal and beetle diversity on coarse woody debris (CWD) was analysed in 36 forest sites in the Cilento and Vallo di Diano National Park, Italy. The data were analysed by DCA and Spearman’s rank correlation. The results provide empirical evidence of the existence of a pattern of joint colonization of the woody substrate by fungi and beetles, which includes an assemblage of reciprocal trophic roles within fungal/beetle communities. These organisms act together to form a dynamic taxonomical and functional ecosystem component within the complex set of processes involved in wood decay. The variables most predictive of correlations between management‐related structural attributes and fungal/beetle species richness and their trophic roles for old‐growth forest are: number of logs, number of decay classes and CWD total volume. Deadwood spatio‐temporal continuity should be the main objective of forest planning to stop the loss of saproxylic fungal and insect biodiversity.  相似文献   

7.
Decomposition transfers carbon (C) from detrital organic matter to soil and atmospheric pools. In forested ecosystems, deadwood accounts for a large proportion of the detrital C pool and is primarily decomposed by wood-inhabiting fungi (WIF). Deadwood reductions linked to forest harvesting may alter WIF richness and composition, thus indirectly influencing the persistence of deadwood and its contribution to C and nutrient cycling. Forest structure was enhanced via canopy gap creation and coarse woody debris (CWD) addition that mimic natural disturbance by windfall within a deciduous northern hardwood forest (Wisconsin, USA) to examine its effect on deadwood-associated biodiversity and function. Experimental sugar maple (Acer saccharum) logs were sampled, for DNA extraction, ten years after placement to determine the assembly of fungal community composition and its relationship to wood decay rates.Our findings suggest that the WIF community responded to gap disturbance by favoring species able to persist under more extreme microclimates caused by gaps. CWD addition under closed canopy tended to favor a different species assemblage from gap creation treatments and the control, where canopy was undisturbed and CWD was not added. This was presumably due to consistent microclimatic conditions and the abundance of CWD substrates for host specialists. Fungal OTU richness was significantly and inversely related to CWD decay rates, likely due to competition for resources. In contrast, fungal OTU composition was not significantly related to CWD decay rates, canopy openness or CWD addition amounts. Our study site represents a diverse fungal community in which complex interactions among wood-inhabiting organisms and abiotic factors are likely to slow CWD decomposition, which suggests that maintaining a biodiverse and microsite-rich ecosystem may enhance the capacity for C storage within temperate forests.  相似文献   

8.
We investigated the distribution pattern of centipedes (Chilopoda) in four primeval forests of the western Carpathians, central Slovakia. The forests are located in two different mountain ranges (Kremnické vrchy and Pol’ana Mountains), which are exposed on either the southern (Boky, Rohy) or northern slopes (Pol’ana, Badín). In these forests, the influence of coarse woody debris (CWD) on centipede distribution was studied, by distinguishing sampling sites on the forest floor, close to CWD (c-CWD) and distant from CWD (d-CWD). In total, we collected 2,706 individuals from 20 species of centipedes. Average species richness and number of individuals per forest ranged from 8 to 12 species/m2 and from 244 to 486 individuals/m2. The oak forests on south facing slopes harboured several species, which did not occur in the more northern exposed fir-beech forests. Number of species as well as individuals, however, varied more within than between individual forests. Increase of species number and density was mainly caused by CWD and was more pronounced on the southern slopes (P<0.001), characterized by high temperatures and low precipitation, than on the northern slopes (n.s. to P<0.01), characterized by low temperatures and high precipitation. It was found that CWD did not generally increase (species) diversity.  相似文献   

9.
《Mycoscience》2019,60(3):156-164
Many Agaricomycotina species are saprobes, playing a fundamental role in nutrient cycling in forest ecosystems by decomposing wood. Little is known about factors affecting diversity of wood-inhabiting fungi in the neotropical, warm temperate native forests of Uruguay. Most of these native forests are riparian harboring about 300 tree species. In this study, we assessed the diversity of wood-inhabiting fungi on wood of different size classes in riparian forests of Uruguay. We recovered 186 species of Agaricomycotina, including 113 corticioid and 58 polyporoid taxa. Eleven taxa accounted for 38% of the all the samples. The highest number of species was found on fine woody debris (FWD, 2–10 cm diam) than coarse woody debris (CWD, >10 cm diam) and very fine woody debris (VFWD, <2 cm diam). Species-accumulation curves did not reach an asymptote for any of the groups or wood diameter classes studied. Polyporoids were more frequently recorded on CWD (61% of collections) and corticioids on VFWD (77%). Species richness estimated by non-parametric estimators indicates an Agaricomycotina species richness between 450 and 700 taxa. Our results show that Uruguayan riparian forests, despite its limited area and fragmentation, support a wood-inhabiting Agaricomycotina diversity comparable to less fragmented forests with more plant diversity.  相似文献   

10.
Coarse woody debris (CWD) is generally considered as dead woody materials in various stages of decomposition, including sound and rotting logs, snags, and large branches. CWD is an important functional and structural component of forested ecosystems and plays an important role in nutrient cycling, long-term carbon storage, tree regeneration, and maintenance of heterogeneous environmental and biological diversity. However, the definition and classification of CWD have been the subject of a long debate in forest ecology. CWD has not been precisely defined. Recently, with the rapid development of landscape ecology in CWD, the USDA Forest Service and the Long Term Ecological Research (LTER) have provided a standardized definition and classification for CWD, which makes data comparison in landscape scale possible. Important characteristics of their definition include: (1) a minimum diameter (or an equivalent cross-section) of CWD ≥10 cm at the widest point (the woody debris with a diameter from 1 to 10 cm should be defined as fine woody debris, and the rest is litterfall); and (2) sound and rotting logs, snags, stumps, and large branches (located above the soil), and coarse root debris (larger than 1 cm in diameter). This classification has greatly facilitated CWD studies. Therefore, it has been widely applied in some countries (particularly in North America). However, this classification has long been a source of confusion for forest ecologists in China. Furthermore, different definitions and criteria are still adopted in individual studies, which makes the interpretation and generalization of their work difficult. This article reviewed recent progress in classifying CWD, with an emphasis on introducing the classification system of the USDA Forest Service and the LTER. It is expected that this review will help facilitate the development of standardized definition and classification suitable to forest ecosystems in China. Translated from Acta Ecologica Sinica, 2005, 25(1) (in Chinese)  相似文献   

11.
In order to investigate the diversity of wood-inhabiting aphyllophoroid basidiomycetes in Swiss forests, 86 plots of 50 m 2 were established. They harboured a total of 3339 samples of woody debris, classified according to three categories (coarse, fine, and very fine woody debris), yielding 238 species of wood-inhabiting fungi. The selected sites cover the main forest types of Switzerland and various degrees of management intensity. A multiple linear regression analysis showed that substrate variation, i.e. differences in the quality of dead wood, including volume, age, degree of decomposition and host tree species, are the most important factors influencing diversity of wood-inhabiting fungi. In addition, a Principle Coordinate Analysis highlighted differences in the fungal communities in the different forest types. The greatest fungal species richness is found on thermophilic deciduous tree and woody shrub species. Fine and very fine woody debris, even present in intensively managed forests, often serve as important refuges for many species. Forests with a recent management intervention were found to be either species poor or species rich. Possible reasons for these differences may lay in forest size and landscape fragmentation, the distance to the nearest species pool or microclimatic factors. In Switzerland intensively managed forests harbour significantly less wood-inhabiting, aphyllophoroid fungi than non-managed or extensively managed forests. This is the case in both deciduous forests and in conifer forests. However, occasionally intensively managed forest will also harbour rare and endangered species.  相似文献   

12.
As an important component in montane moist forest ecosystems, bryophyte plays key roles in sustaining biodiversity and facilitating many ecological processes. The species composition and association of bryophytes on four substrates of CWD (coarse woody debris), canopy, forest floor and rock were investigated in middle mountain moist evergreen broad leaved forest in Ailao Mt., Yunnan. The results showed this region boasted a rich bryophyte flora which yielded 141 species belonging to 38 families and 69 genera, with Meteoriaceae (14 spp.) and Dicranaceae (13 spp.) predominating. 27 species appeared in more than 3 types of substrates. Host trunk had the largest number of species (94 spp.) among all substrate types. It found that there was a trend of bryophyte diversity decreased with increase of species association among dominant species of bryophyte at the level of microhabitat, based on the analysis of species association on different substrates in the natural forest.  相似文献   

13.
Experimental canopy gap formation and additions of coarse woody debris (CWD) are techniques intended to mimic the disturbance regime and accelerate the development of northern hardwood forests. The effects of these techniques on biodiversity and ecosystem functioning were investigated by surveying the abundance and diversity of wood-inhabiting fungi in six treatments: (i) unharvested control, (ii) control + fenced to exclude deer, (iii) gap creation + fenced to exclude deer, (iv) gap creation, (v) gap creation + CWD addition, and (vi) CWD addition under closed-canopy. A total of 1,885 fungal occurrences (polyporoid and corticoid fruiting bodies) representing 130 species were recorded on 11 tree species, with eight fungal species accounting for 52 % of all observations. A linear mixed model demonstrated significant differences in the abundance and diversity of wood-inhabiting fungi by treatment, with the gap creation + CWD addition treatment supporting the highest abundance and richness of fungal species. Non-metric multidimensional scaling demonstrated that stumps, sugar maple substrates, medium (20 to <25 cm) and large-diameter (>40 cm) substrates most strongly influenced fungal species occurrences. Rarefaction curves indicated that smaller diameter substrates (<20 cm) supported a rich fungal community, yet substrates in the largest diameter class (>40 cm) supported nearly 25 % of all fungal species detected. Rarefaction curves also highlighted the importance of well-decayed substrates and minor host tree species. A subset of fungal species was significantly more abundant in gap treatments. The results indicate that wood-inhabiting fungi are responsive to forest management intended to promote the structural attributes of old-growth northern hardwood forests.  相似文献   

14.
Aim Our objectives were to compare understorey plant community structure among forest types, and to test hypotheses relating understorey community structure within lower montane and subalpine forests to fire history, forest structure, fuel loads and topography. Location Forests on the North Rim of Grand Canyon National Park, Arizona, USA. Methods We measured understorey (< 1.4 m) plant community structure in 0.1‐ha plots. We examined differences in univariate response variables among forest types, used permutational manova to assess compositional differences between forest types, and used indicator species analysis to identify species driving the differences between forest types. We then compiled sets of proposed models for predicting plant community structure, and used Akaike's information criterion (AICC) to determine the support for each model. Model averaging was used to make multi‐model inferences if no single model was supported. Results Within the lower montane zone, pine–oak forests had greater understorey plant cover, richness and diversity than pure stands of ponderosa pine (Pinus ponderosa P. & C. Lawson var. scopulorum Engelm.). Plant cover was negatively related to time since fire and to ponderosa pine basal area, and was highest on northern slopes and where Gambel oak (Quercus gambelii Nutt.) was present. Species richness was negatively related to time since fire and to ponderosa pine basal area, and was highest on southern slopes and where Gambel oak was present. Annual forb species richness was negatively related to time since fire. Community composition was related to time since fire, pine and oak basal area, and topography. Within subalpine forests, plant cover was negatively related to subalpine fir basal area and amounts of coarse woody debris (CWD), and positively related to Engelmann spruce basal area. Species richness was negatively related to subalpine fir basal area and amounts of CWD, was positively related to Engelmann spruce basal area, and was highest on southern slopes. Community composition was related to spruce, fir and aspen basal areas, amounts of CWD, and topography. Main conclusions In montane forests, low‐intensity surface fire is an important ecological process that maintains understorey communities within the range of natural variability and appears to promote landscape heterogeneity. The presence of Gambel oak was positively associated with high floristic diversity. Therefore management that encourages lightning‐initiated wildfires and Gambel oak production may promote floristic diversity. In subalpine forests, warm southern slopes and areas with low amounts of subalpine fir and CWD were positively associated with high floristic diversity. Therefore the reduction of CWD and forest densities through managed wildfire may promote floristic diversity, although fire use in subalpine forests is inherently more difficult due to intense fire behaviour in dense spruce–fir forests.  相似文献   

15.
苔藓植物是构成山地原生常绿阔叶林结构及景观的重要组分之一,在生态系统生物多样性的维系等方面发挥重要的生态功能。本研究以云南哀牢山中山湿性常绿阔叶林为对象,对林冠树干和林下木质残体、林地及岩石表面四类不同生长基质上苔藓植物的物种分布特征进行了调查研究,并运用Kendall一致性指数计算了各生长基质上苔藓植物物种之间的相关联程度,用聚类的方法对不同生长基质上苔藓植物物种进行了分类。研究结果表明:本区山地森林具有丰富的苔藓植物,共记录141种,分属38科69属,其中林冠树干上分布的苔藓植物的物种数量最多,为94种,林地上最少,仅29种;有27种苔藓植物同时分布在这3种以上的生长基质上。通过对不同类型生长基质之间苔藓植物种间关联程度的分析,发现在微生境的尺度上,随着优势苔藓植物种类间的关联程度的增加,苔藓植物多样性呈现出逐渐减少的趋势。  相似文献   

16.
小兴安岭谷地云冷杉林粗木质残体碳密度特征   总被引:4,自引:3,他引:1  
蔡慧颖  邸雪颖  金光泽 《生态学报》2015,35(24):8194-8201
以小兴安岭谷地云冷杉林9.12 hm~2固定样地为研究对象,分析粗木质残体(CWD)碳密度的基础特征,揭示其与林分因子和物种多样性的关系。结果表明:(1)谷地云冷杉林CWD碳密度为13.25 t C/hm~2,其中云杉(Picea spp.)、冷杉(Abies nephrolepis)、兴安落叶松(Larix gmelinii)和未知种的CWD碳密度分别为3.59、2.61、3.06和2.85 t C/hm~2。(2)不同腐烂等级下CWD碳密度呈近正态分布,多集中在Ⅱ和Ⅲ等级,分别占总量的42.7%和35.4%。不同径级的CWD碳密度也呈近正态分布,主要分布在30—40 cm和40—50 cm径级上。干中折断、拔根倒、枯立木和干基折断为谷地云冷杉林CWD碳密度的主要存在方式。腐烂等级为Ⅰ和Ⅴ的CWD中,拔根倒的碳密度最高,其他腐烂等级中均为干中折断的碳密度最高。(3)CWD碳密度表现出较强的空间异质性,其随着林分平均胸径、最大胸径和胸高断面积的增加而下降,呈显著负相关关系(P0.05);而与林分密度、多样性指数和均匀度指数均无显著相关性(P0.05)。  相似文献   

17.
Compared to natural forests, coarse woody debris (CWD) is typically scarce in restored forests due to the long time it takes to develop naturally. In post‐mining restored forests in the Jarrah forest of south western Australia, CWD is returned at densities of one log pile per hectare. We tested the adequacy of these densities for meeting the micro‐habitat requirements of Napoleon's skink (Egernia napoleonis), a species rarely found within restored sites. Home range size and overlap, and micro‐habitat densities used by skinks, were measured by radio‐tracking 12 individuals in natural, unmined forest. Napoleon's skinks had small home ranges (0.08 ± 0.02 ha), based on 8 individuals with sufficient fixes. All skinks overlapped in home ranges, with average overlaps of 43.5 ± 8.6%. Ten of the 12 skinks shared micro‐habitats and 4 shared them simultaneously, which indicates some social tolerance. This will influence as to how many micro‐habitats are required. Micro‐habitats were used at high densities: logs at 49.2 ± 8.8 ha?1 and woody debris piles at 12.4 ± 4.8 ha?1. Based on these densities, it is recommended that CWD is returned to restored forests at densities of 60 ha?1, which should provide sufficient micro‐habitats for multiple skinks. Due to the infeasibility of returning such CWD densities across large areas of restored forest, CWD could be preferentially returned as patches, large enough for numerous home ranges, adjacent to unmined forest, or as corridors between unmined forest. These recommendations for returning micro‐habitats should be tested for effectiveness in encouraging recolonization of restored forest by Napoleon's skink and other species.  相似文献   

18.
Coarse woody debris (CWD) plays an important role in long-term carbon storage in forest ecosystems. However, few studies have examined CWD in mangrove forests. A secondary mangrove forest on an estuary of the Trat River showed different structures along vegetation zones ranging from the river’s edge to inland parts of the forest (the SonneratiaAvicennia, Avicennia, Rhizophora, and Xylocarpus zones, respectively). The mass distribution of CWD stock in downed wood and standing dead trees along these vegetation zones was evaluated. Most of the CWD stock in the SonneratiaAvicennia and Avicennia zones was found in downed wood, while it mainly accumulated in standing dead trees in the Rhizophora and Xylocarpus zones. The total mass of CWD stock that accumulated in each zone ranged from 1.56–8.39 t ha?1, depending on the forest structure and inundation regimes. The annual woody debris flux in each zone was calculated by summing the necromass (excluding foliage) of dead trees and coarse litter from 2010 to 2013. The average woody debris flux was 5.4 t ha?1 year?1, and its zonal variation principally depended on the necromass production that resulted from forest succession, high tree-density, and lightning. Over all the zones, the above- and below-ground net primary production (ANPP and BNPP, respectively) was estimated at 18.0 and 3.6 t ha?1 year?1, respectively. The magnitude of BNPP and its contribution to the NPP was markedly increased when fine root production was taken into consideration. The contribution of the woody debris flux without root necromass to the ANPP ranged from 12 to 28%.  相似文献   

19.
Abstract. This study reports temporal (based on cross‐dated dead trees) and spatial patterns of availability of coarse woody debris (CWD) from Picea abies in a Swedish boreal landscape with discrete old‐growth forest patches in a wetland matrix. Data were collected from 29 patches ranging in size from 0.3 to 28 ha. A total of 897 dead trees with a minimum diameter of > 15 cm occurred on the 7.2 ha area analysed. The year of death was established for 50% of these trees. CWD volume ranged from 17 to 65 m3/ha for downed logs and from 0.5 to 13 m3/ha for standing snags. CWD of all decay stages and diameter classes occurred abundantly and the probability of finding logs of all decay stages and sizes was very high at the scale of single hectares. Tree mortality differed among 5 yr periods. However, during the last 50 yr no 5 yr period produced less than 3 logs/ha. Decay rates were highly variable among different logs. Logs with soft wood and some wood pieces lost (decay stage 5) died ca. 34 years ago. This suggests a fairly rapid decay in this northern forest. The data indicate a high and continuous availability of CWD of all types. It is likely, therefore, that selection pressures for efficient dispersal among CWD dependent species may not be very high. Consequently, species with narrow habitat demands and/or low dispersal ability may have evolved and this may contribute to the decrease of certain species in the managed landscape.  相似文献   

20.
Beech cupule litter is the second largest (next to leaf litter) component of total annual litterfall in mast years, and makes an important contribution to carbon budgets in beech forest soils. We investigated the decomposition processes of beech cupule litter over a 30-month period with reference to the role of fungal succession in the decomposition of acid-unhydrolyzable residue (AUR) and holocellulose. During the study period, weight loss of holocellulose occurred, while there was little weight loss of AUR, and 77?% of the original cupule weight remained at the end of the study period. Xylaria sp.1, Geniculosporium sp. and Nigrospora sp. that can attack holocellulose selectively caused mass loss of holocellulose and were responsible for the cupule weight loss. Although the beech cupule is a woody phyllome and its lignocellulose composition is similar to that of coarse woody debris (CWD) rather than leaf litter of beech, the selective decomposition of holocellulose by fungi was similar to the decay process of leaf litter rather than CWD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号