首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 908 毫秒
1.
Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and total GHG emissions were modeled using the CoupModel for four scenarios: (1) business as usual—Norway spruce with average soil water table of ?40 cm; (2) willow with groundwater at ?20 cm; (3) reed canary grass with groundwater at ?10 cm; and (4) a fully rewetted peatland. The predictions were based on previous model calibrations with several high‐resolution datasets consisting of water, heat, carbon, and nitrogen cycling. Spruce growth was calibrated by tree‐ring data that extended the time period covered. The GHG balance of four scenarios, including vegetation and soil, were 4.7, 7.1, 9.1, and 6.2 Mg CO2eq ha?1 year?1, respectively. The total soil emissions (including litter and peat respiration CO2 + N2O + CH4) were 33.1, 19.3, 15.3, and 11.0 Mg CO2eq ha?1 year?1, respectively, of which the peat loss contributed 35%, 24%, and 7% of the soil emissions for the three drained scenarios, respectively. No peat was lost for the wet peatland. It was also found that draining increases vegetation growth, but not as drastically as peat respiration does. The cost–benefit analysis (CBA) is sensitive to time frame, discount rate, and carbon price. Our results indicate that the net benefit was greater with a somewhat higher soil water table and when the peatland was vegetated with willow and reed canary grass (Scenarios 2 and 3). We conclude that saving peat and avoiding methane release using fairly wet conditions can significantly reduce GHG emissions, and that this strategy should be considered for land use planning and policy‐making.  相似文献   

2.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

3.
The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO2, CH4 and N2O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH4 uptake decreased by 6.0%. Furthermore, the percentage increase in N2O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver (Ecology Letters, 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha?1 year?1 per kg N ha?1 year?1) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO2/year. It also increased net soil GHG emissions by 10.20 Pg CO2‐Geq (CO2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.  相似文献   

4.
Land‐use/land‐cover change (LULCC) often results in degradation of natural wetlands and affects the dynamics of greenhouse gases (GHGs). However, the magnitude of changes in GHG emissions from wetlands undergoing various LULCC types remains unclear. We conducted a global meta‐analysis with a database of 209 sites to examine the effects of LULCC types of constructed wetlands (CWs), croplands (CLs), aquaculture ponds (APs), drained wetlands (DWs), and pastures (PASs) on the variability in CO2, CH4, and N2O emissions from the natural coastal wetlands, riparian wetlands, and peatlands. Our results showed that the natural wetlands were net sinks of atmospheric CO2 and net sources of CH4 and N2O, exhibiting the capacity to mitigate greenhouse effects due to negative comprehensive global warming potentials (GWPs; ?0.9 to ?8.7 t CO2‐eq ha?1 year?1). Relative to the natural wetlands, all LULCC types (except CWs from coastal wetlands) decreased the net CO2 uptake by 69.7%?456.6%, due to a higher increase in ecosystem respiration relative to slight changes in gross primary production. The CWs and APs significantly increased the CH4 emissions compared to those of the coastal wetlands. All LULCC types associated with the riparian wetlands significantly decreased the CH4 emissions. When the peatlands were converted to the PASs, the CH4 emissions significantly increased. The CLs, as well as DWs from peatlands, significantly increased the N2O emissions in the natural wetlands. As a result, all LULCC types (except PASs from riparian wetlands) led to remarkably higher GWPs by 65.4%?2,948.8%, compared to those of the natural wetlands. The variability in GHG fluxes with LULCC was mainly sensitive to changes in soil water content, water table, salinity, soil nitrogen content, soil pH, and bulk density. This study highlights the significant role of LULCC in increasing comprehensive GHG emissions from global natural wetlands, and our results are useful for improving future models and manipulative experiments.  相似文献   

5.
There are limited data for greenhouse gas (GHG) emissions from smallholder agricultural systems in tropical peatlands, with data for non-CO2 emissions from human-influenced tropical peatlands particularly scarce. The aim of this study was to quantify soil CH4 and N2O fluxes from smallholder agricultural systems on tropical peatlands in Southeast Asia and assess their environmental controls. The study was carried out in four regions in Malaysia and Indonesia. CH4 and N2O fluxes and environmental parameters were measured in cropland, oil palm plantation, tree plantation and forest. Annual CH4 emissions (in kg CH4 ha−1 year−1) were: 70.7 ± 29.5, 2.1 ± 1.2, 2.1 ± 0.6 and 6.2 ± 1.9 at the forest, tree plantation, oil palm and cropland land-use classes, respectively. Annual N2O emissions (in kg N2O ha−1 year−1) were: 6.5 ± 2.8, 3.2 ± 1.2, 21.9 ± 11.4 and 33.6 ± 7.3 in the same order as above, respectively. Annual CH4 emissions were strongly determined by water table depth (WTD) and increased exponentially when annual WTD was above −25 cm. In contrast, annual N2O emissions were strongly correlated with mean total dissolved nitrogen (TDN) in soil water, following a sigmoidal relationship, up to an apparent threshold of 10 mg N L−1 beyond which TDN seemingly ceased to be limiting for N2O production. The new emissions data for CH4 and N2O presented here should help to develop more robust country level ‘emission factors’ for the quantification of national GHG inventory reporting. The impact of TDN on N2O emissions suggests that soil nutrient status strongly impacts emissions, and therefore, policies which reduce N-fertilisation inputs might contribute to emissions mitigation from agricultural peat landscapes. However, the most important policy intervention for reducing emissions is one that reduces the conversion of peat swamp forest to agriculture on peatlands in the first place.  相似文献   

6.

Peatlands are characterized by their large carbon (C) storage capacity and represent important C sinks globally. In southern Chile, young peatlands (few centuries old) have originated due to clearcutting or fire at forest sites with high precipitation on poorly drained soils. These novel ecosystems are called anthropogenic peatlands here. Their role in the regional C cycle remains largely unknown. Here, we present 18 months of eddy covariance measurements of net ecosystem exchange (NEE) of carbon dioxide (CO2) in an anthropogenic peatland in northern Chiloé Island, part of which is kept undisturbed for 30–40 years, by excluding human uses, and another section of the same peatland that has been disturbed by cattle grazing and Sphagnum moss extraction. Gross primary productivity (GPP) and ecosystem respiration (Reco) were modeled from NEE, based on measured photosynthetically active radiation and air temperature, separately for each section of the peatland. Uncertainties of the annual flux estimates were assessed from the variability of modelled fluxes induced by applying different time-windows for model development between 10 and 20 days. The undisturbed area of the peatland was on average (±?SD) a larger net CO2 sink (NEE?=???135?±?267 g?CO2?m?2?year?1) than the disturbed area (NEE?=???33?±?111 g?CO2?m?2?year?1). These NEE CO2 balances are small even though GPP and Reco were larger compared with other peatlands. Reco had a direct relationship with water table depth (from soil surface) and a negative relationship with soil water fraction. Our results show that the disturbance by moss extraction and cattle grazing is likely to reduce the CO2 sink function of many anthropogenic and natural peatlands on Chiloé Island, which are subjected to the same impacts.

  相似文献   

7.
North American prairie pothole wetlands are known to be important carbon stores. As a result there is interest in using wetland restoration and conservation programs to mitigate the effects of increasing greenhouse gas concentration in the atmosphere. However, the same conditions which cause these systems to accumulate organic carbon also produce the conditions under which methanogenesis can occur. As a result prairie pothole wetlands are potential hotspots for methane emissions. We examined change in soil organic carbon density as well as emissions of methane and nitrous oxide in newly restored, long-term restored, and reference wetlands across the Canadian prairies to determine the net GHG mitigation potential associated with wetland restoration. Our results indicate that methane emissions from seasonal, semi-permanent, and permanent prairie pothole wetlands are quite high while nitrous oxide emissions from these sites are fairly low. Increases in soil organic carbon between newly restored and long-term restored wetlands supports the conclusion that restored wetlands sequester organic carbon. Assuming a sequestration duration of 33 years and a return to historical SOC densities we estimate a mean annual sequestration rate for restored wetlands of 2.7 Mg C ha−1year−1 or 9.9 Mg CO2 eq. ha−1 year−1. Even after accounting for increased CH4 emissions associated with restoration our research indicates that wetland restoration would sequester approximately 3.25 Mg CO2 eq. ha−1year−1. This research indicates that widescale restoration of seasonal, semi-permanent, and permanent wetlands in the Canadian prairies could help mitigate GHG emissions in the near term until a more viable long-term solution to increasing atmospheric concentrations of GHGs can be found.  相似文献   

8.
National scale projections of bioenergy crop yields and their environmental impacts are essential to identify appropriate locations to place bioenergy crops and ensure sustainable land use strategies. In this study, we used the process‐based Daily Century (DAYCENT) model with site‐specific environmental data to simulate sorghum (Sorghum bicolor L. Moench) biomass yield, soil organic carbon (SOC) change, and nitrous oxide emissions across cultivated lands in the continental United States. The simulated rainfed dry biomass productivity ranged from 0.8 to 19.2 Mg ha?1 year?1, with a spatiotemporal average of  Mg ha?1 year?1, and a coefficient of variation of 35%. The average SOC sequestration and direct nitrous oxide emission rates were simulated as  Mg CO2e ha?1 year?1 and  Mg CO2e ha?1 year?1, respectively. Compared to field‐observed biomass yield data at multiple locations, model predictions of biomass productivity showed a root mean square error (RMSE) of 5.6 Mg ha?1 year?1. In comparison to the multi State (n = 21) NASS database, our results showed RMSE of 5.5 Mg ha?1 year?1. Model projections of baseline SOC showed RMSE of 1.9 kg/m2 in comparison to a recently available continental SOC stock dataset. The model‐predicted N2O emissions are close to 1.25% of N input. Our results suggest 10.2 million ha of cultivated lands in the Southern and Lower Midwestern United States will produce >10 Mg ha?1 year?1 with net carbon sequestration under rainfed conditions. Cultivated lands in Upper Midwestern states including Iowa, Minnesota, Montana, Michigan, and North Dakota showed lower sorghum biomass productivity (average: 6.9 Mg ha?1 year?1) with net sequestration (average: 0.13 Mg CO2e ha?1 year?1). Our national‐scale spatially explicit results are critical inputs for robust life cycle assessment of bioenergy production systems and land use‐based climate change mitigation strategies.  相似文献   

9.
Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site‐averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2‐eq. ha?1 yr?1) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2 ha?1 yr?1) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N2O‐N ha?1 yr?1) and methane emissions (30.8 ± 69.8 kg CH4‐C ha?1 yr?1) were lower than expected except for CH4 emissions from nutrient‐poor acidic sites. At single peatlands, CO2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO2 on WTD for the complete data set. Thus, regionalization of CO2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (Nair) as a variable combining soil nitrogen stocks with WTD. CO2 increased with Nair across peatlands. Soils with comparatively low SOC concentrations showed as high CO2 emissions as true peat soils because Nair was similar. N2O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.  相似文献   

10.
Alder is a typical species used for forest rehabilitation after disturbances because of its N2-fixing activities through microbes. To investigate forest dynamics of the carbon budget, we determined the aboveground and soil carbon content, carbon input by litterfall to belowground, and soil CO2 efflux over 2 years in 38-year-old alder plantations in central Korea. The estimated aboveground carbon storage and increment were 47.39 Mg C ha−1 and 2.17 Mg C ha−1 year−1. Carbon storage in the organic layer and in mineral soil in the topsoil to 30 cm depth were, respectively, 3.21 and 66.85 Mg C ha−1. Annual carbon input by leaves and total litter in the study stand were, respectively, 1.78 and 2.68 Mg C ha−1 year−1. The aboveground carbon increment at this stand was similar to the annual carbon inputs by total litterfall. The diurnal pattern of soil CO2 efflux was significantly different in May, August, and October, typically varying approximately twofold throughout the course of a day. In the seasonally observed pattern, soil CO2 efflux varied strongly with soil temperature; increasing trends were evident during the early growing season, with sustained high rates from mid May through late October. Soil CO2 efflux was related exponentially to soil temperature (R 2 = 0.85, < 0.0001), but not to soil water content. The Q 10 value for this plantation was 3.8, and annual soil respiration was estimated at 10.2 Mg C ha−1 year−1. An erratum to this article can be found at  相似文献   

11.
The lowland peatlands of south‐east Asia represent an immense reservoir of fossil carbon and are reportedly responsible for 30% of the global carbon dioxide (CO2) emissions from Land Use, Land Use Change and Forestry. This paper provides a review and meta‐analysis of available literature on greenhouse gas fluxes from tropical peat soils in south‐east Asia. As in other parts of the world, water level is the main control on greenhouse gas fluxes from south‐east Asian peat soils. Based on subsidence data we calculate emissions of at least 900 g CO2 m?2 a?1 (~250 g C m?2 a?1) for each 10 cm of additional drainage depth. This is a conservative estimate as the role of oxidation in subsidence and the increased bulk density of the uppermost drained peat layers are yet insufficiently quantified. The majority of published CO2 flux measurements from south‐east Asian peat soils concerns undifferentiated respiration at floor level, providing inadequate insight on the peat carbon balance. In contrast to previous assumptions, regular peat oxidation after drainage might contribute more to the regional long‐term annual CO2 emissions than peat fires. Methane fluxes are negligible at low water levels and amount to up to 3 mg CH4 m?2 h?1 at high water levels, which is low compared with emissions from boreal and temperate peatlands. The latter emissions may be exceeded by fluxes from rice paddies on tropical peat soil, however. N2O fluxes are erratic with extremely high values upon application of fertilizer to wet peat soils. Current data on CO2 and CH4 fluxes indicate that peatland rewetting in south‐east Asia will lead to substantial reductions of net greenhouse gas emissions. There is, however, an urgent need for further quantitative research on carbon exchange to support the development of consistent policies for climate change mitigation.  相似文献   

12.
The aim of this study is to estimate emissions of greenhouse gases CO2, CH4 and N2O, and the effects of drainage and peat extraction on these processes, in Estonian transitional fens and ombrotrophic bogs. Closed-chamber-based sampling lasted from January to December 2009 in nine peatlands in Estonia, covering areas with different land-use practices: natural (four study sites), drained (six sites), abandoned peat mining (five sites) and active peat mining areas (five sites). Median values of soil CO2 efflux were 1,509, 1,921, 2,845 and 1,741 kg CO2-C ha?1 year?1 from natural, drained, abandoned and active mining areas, respectively. Emission of CH4-C (median values) was 85.2, 23.7, 0.07 and 0.12 kg ha?1 year?1, and N2O-N ?0.05, ?0.01, 0.18 and 0.19 kg ha?1 year?1, respectively. There were significantly higher emissions of CO2 and N2O from abandoned and active peat mining areas, whereas CH4 emissions were significantly higher in natural and drained areas. Significant Spearman rank correlation was found between soil temperature and CO2 flux at all sites, and CH4 flux with high water level at natural and drained areas. Significant increase in CH4 flux was detected for groundwater levels above 30 cm.  相似文献   

13.
Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m?2 h?1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m?2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage.  相似文献   

14.
Tropical peatlands are a known source of methane (CH4) to the atmosphere, but their contribution to atmospheric CH4 is poorly constrained. Since the 1980s, extensive areas of the peatlands in Southeast Asia have experienced land‐cover change to smallholder agriculture and forest plantations. This land‐cover change generally involves lowering of groundwater level (GWL), as well as modification of vegetation type, both of which potentially influence CH4 emissions. We measured CH4 exchanges at the landscape scale using eddy covariance towers over two land‐cover types in tropical peatland in Sumatra, Indonesia: (a) a natural forest and (b) an Acacia crassicarpa plantation. Annual CH4 exchanges over the natural forest (9.1 ± 0.9 g CH4 m?2 year?1) were around twice as high as those of the Acacia plantation (4.7 ± 1.5 g CH4 m?2 year?1). Results highlight that tropical peatlands are significant CH4 sources, and probably have a greater impact on global atmospheric CH4 concentrations than previously thought. Observations showed a clear diurnal variation in CH4 exchange over the natural forest where the GWL was higher than 40 cm below the ground surface. The diurnal variation in CH4 exchanges was strongly correlated with associated changes in the canopy conductance to water vapor, photosynthetic photon flux density, vapor pressure deficit, and air temperature. The absence of a comparable diurnal pattern in CH4 exchange over the Acacia plantation may be the result of the GWL being consistently below the root zone. Our results, which are among the first eddy covariance CH4 exchange data reported for any tropical peatland, should help to reduce the uncertainty in the estimation of CH4 emissions from a globally important ecosystem, provide a more complete estimate of the impact of land‐cover change on tropical peat, and develop science‐based peatland management practices that help to minimize greenhouse gas emissions.  相似文献   

15.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

16.
Rewetting of drained peatlands has been recommended to reduce CO2 emissions and to restore the carbon sink function of peatlands. Recently, the combination of rewetting and biomass production (paludiculture) has gained interest as a possible land use option in peatlands for obtaining such benefits of lower CO2 emissions without losing agricultural land. This study quantified the carbon balance (CO2, CH4 and harvested biomass C) of rewetted and drained peat soils under intensively managed reed canary grass (RCG) cultivation. Mesocosms were maintained at five different groundwater levels (GWLs), that is 0, 10, 20 cm below the soil surface, representing rewetted peat soils, and 30 and 40 cm below the soil surface, representing drained peat soils. Net ecosystem exchange (NEE) of CO2 and CH4 emissions was measured during the growing period of RCG (May to September) using transparent and opaque closed chamber methods. The average dry biomass yield was significantly lower from rewetted peat soils (12 Mg ha?1) than drained peat soils (15 Mg ha?1). Also, CO2 fluxes of gross primary production (GPP) and ecosystem respiration (ER) from rewetted peat soils were significantly lower than from drained peat soils, but net uptake of CO2 was higher from rewetted peat soils. Cumulative CH4 emissions were negligible (0.01 g CH4 m?2) from drained peat soils but were significantly higher (4.9 g CH4 m?2) from rewetted peat soils during measurement period (01 May–15 September 2013). The extrapolated annual C balance was 0.03 and 0.68 kg C m?2 from rewetted and drained peat soils, respectively, indicating that rewetting and paludiculture can reduce the loss of carbon from peatlands.  相似文献   

17.
Crop residues like corn (Zea mays L.) stover perform important functions that promote soil health and provide ecosystem services that influence agricultural sustainability and global biogeochemical cycles. We evaluated the effect of corn stover removal from a no-till, corn-soybean (Glycine max (L.) Merr) rotation on soil greenhouse gas (GHG; CO2, N2O, CH4) fluxes, crop yields, and soil organic carbon (SOC) dynamics. We conducted a 4-year study using replicated field plots managed with two levels of corn stover removal (none; 55 % stover removal) for four complete crop cycles prior to initiation of ground surface gas flux measurements. Corn and soybean yields were not affected by stover removal with yields averaging 7.28 Mg ha?1 for corn and 2.64 Mg ha?1 for soybean. Corn stover removal treatment did not affect soil GHG fluxes from the corn phase; however, the treatment did significantly increase (107 %, P?=?0.037) N2O fluxes during the soybean phase. The plots were a net source of CH4 (~0.5 kg CH4-C ha?1 year?1 average of all treatments and crops) during the generally wet study duration. Soil organic carbon stocks increased in both treatments during the 4-year study (initiated following 8 years of stover removal), with significantly higher SOC accumulation in the control plots compared to plots with corn stover removal (0–15 cm, P?=?0.048). Non-CO2 greenhouse gas emissions (945 kg CO2-eq ha?1 year?1) were roughly half of SOC (0–30 cm) gains with corn stover removal (1.841 Mg CO2-eq ha?1 year?1) indicating that no-till practices greatly improve the viability of biennial corn stover harvesting under local soil-climatic conditions. Our results also show that repeated corn stover harvesting may increase N loss (as N2O) from fields and thereby contribute to GHG production and loss of potential plant nutrients.  相似文献   

18.
The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO2) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO2. We show that elevated CO2 significantly stimulates plant C pool (NPP) by 20%, soil CO2 fluxes by 24%, and methane (CH4) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH4 uptake of upland soils by 3.8%. Elevated CO2 causes insignificant increases in soil nitrous oxide (N2O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO2‐induced increase in GHG emissions may decline with CO2 enrichment levels. An elevated CO2‐induced rise in soil CH4 and N2O emissions (2.76 Pg CO2‐equivalent year?1) could negate soil C enrichment (2.42 Pg CO2 year?1) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO2 year?1) under elevated CO2. Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO2 might have been largely offset by its induced increases in soil GHGs source strength.  相似文献   

19.
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near‐natural conditions. We monitored GHG flux dynamics via high‐resolution flow‐through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2–C m?2 day?1; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2–C m?2 day?1, mean ± SD, pre‐ and post‐thaw, respectively). Radiocarbon dating (14C) of respired CO2, supported by an independent curve‐fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post‐thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO2 burden post‐thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre‐ and post‐thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.  相似文献   

20.
Urban land-use change has the potential to affect local to global biogeochemical carbon (C) and nitrogen (N) cycles and associated greenhouse gas (GHG) fluxes. We conducted a meta-analysis to (1) assess the effects of urbanization-induced land-use conversion on soil nitrous oxide (N2O) and methane (CH4) fluxes, (2) quantify direct N2O emission factors (EFd) of fertilized urban soils used, for example, as lawns or forests, and (3) identify the key drivers leading to flux changes associated with urbanization. On average, urbanization increases soil N2O emissions by 153%, to 3.0 kg N ha−1 year−1, while rates of soil CH4 uptake are reduced by 50%, to 2.0 kg C ha−1 year−1. The global mean annual N2O EFd of fertilized lawns and urban forests is 1.4%, suggesting that urban soils can be regional hotspots of N2O emissions. On a global basis, conversion of land to urban greenspaces has increased soil N2O emission by 0.46 Tg N2O-N year−1 and decreased soil CH4 uptake by 0.58 Tg CH4-C year−1. Urbanization driven changes in soil N2O emission and CH4 uptake are associated with changes in soil properties (bulk density, pH, total N content, and C/N ratio), increased temperature, and management practices, especially fertilizer use. Overall, our meta-analysis shows that urbanization increases soil N2O emissions and reduces the role of soils as a sink for atmospheric CH4. These effects can be mitigated by avoiding soil compaction, reducing fertilization of lawns, and by restoring native ecosystems in urban landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号