首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is widely accepted that receptor protein-tyrosine kinases (RTKs) are activated upon dimerization by binding to their extracellular ligands. However, EGF receptor (EGFR) dimerization per se does not require ligand binding. Instead, its cytoplasmic kinase domains have to form characteristic head-to-tail asymmetric dimers to become active, where one 'activator' domain activates the other 'receiver' domain. The non-catalytic, cytoplasmic regions of RTKs, namely the juxtamembrane and carboxy terminal portions, also regulate kinase activity. For instance, the juxtamembrane region of the RTK MuSK inhibits the kinase domain probably together with a cellular factor(s). These findings suggest that RTKs could be activated by cytoplasmic proteins. Indeed, Dok-7 and cytohesin have recently been identified as such activators of MuSK and EGFR, respectively. Given that failure of Dok-7 signaling causes myasthenia, and inhibition of cytohesin signaling reduces the proliferation of EGFR-dependent cancer cells, cytoplasmic activators of RTKs may provide new therapeutic targets.  相似文献   

2.
Like many other receptor tyrosine kinases (RTKs), platelet-derived growth factor (PDGF) receptor β (PDGFR-β) is internalized and degraded in lysosomes in response to PDGF stimulation, which regulates many aspects of cell signalling. However, little is known about the regulation of PDGFR-β endocytosis. Given that ligand binding is essential for the rapid internalization of RTKs, the events induced by the ligand binding likely contribute to the regulation of ligand-induced RTK internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. In this communication, we examined the role of PDGFR-β kinase activity, PDGFR-β dimerization and PDGFR-β C-terminal motifs in PDGF-induced PDGFR-β internalization. We showed that inhibition of PDGFR-β kinase activity by chemical inhibitor or mutation did not block PDGF-induced PDGFR-β endocytosis, suggesting that the kinase activity is not essential. We further showed that dimerization of PDGFR-β is essential and sufficient to drive PDGFR-β internalization independent of PDGFR-β kinase activation. Moreover, we showed that the previously reported 14 amino acid sequence 952-965 is required for PDGF-induced PDGFR-β internalization. Most importantly, we showed that this PDGFR-β internalization motif is exchangeable with the EGFR internalization motif (1005-1017) in mediating ligand-induced internalization of both PDGFR-β and EGFR. This indicates a common mechanism for the internalization of both PDGFR-β and EGFR.  相似文献   

3.
The physiological relevance of contacts in crystal lattices often remains elusive. This was also the case for the complex between the invasion protein internalin B (InlB) from Listeria monocytogenes and its host cell receptor, the human receptor tyrosine kinase (RTK) MET. InlB is a MET agonist and induces bacterial host cell invasion. Activation of RTKs generally involves ligand‐induced dimerization of the receptor ectodomain. The two currently available crystal structures of the InlB:MET complex show the same arrangement of InlB and MET in a 1:1 complex, but different dimeric 2:2 assemblies. Only one of these 2:2 assemblies is predicted to be stable by a computational procedure. This assembly is mainly stabilized by a contact between the Cap domain of InlB from one and the Sema domain of MET from another 1:1 complex. Here, we probe the physiological relevance of this interaction. We generated variants of the leucine‐rich repeat (LRR) protein InlB by inserting an additional repeat between the first and the second LRR. This should allow formation of the 1:1 complex but disrupt the potential 2:2 complex involving the Cap‐Sema contact due to steric distortions. A crystal structure of one of the engineered proteins showed that it folded properly. Binding affinity to MET was comparable to that of wild‐type InlB. The InlB variant induced MET phosphorylation and cell scatter like wild‐type InlB. These results suggest that the Cap‐Sema interaction is not physiologically relevant and support the previously proposed assembly, in which a 2:2 InlB:MET complex is built around a ligand dimer.  相似文献   

4.
The recent crystallographic structure of the insulin receptor (IR) extracellular domain has brought us closer to ending several decades of speculation regarding the stoichiometry and mechanism of insulin-receptor binding and negative cooperativity. It supports a bivalent crosslinking model whereby two sites on the insulin molecule alternately crosslink two partial-binding sites on each insulin-receptor half. Ligand-induced or -stabilized receptor dimerization or oligomerization is a general feature of receptor tyrosine kinases (RTKs), in addition to cytokine receptors, but the kinetic consequences of this mechanism have been less well studied in other RTKs than in the IR. Surprisingly, recent studies indicate that constitutive dimerization and negative cooperativity are also ubiquitous properties of G-protein-coupled receptors (GPCRs), which show allosteric mechanisms similar to those described for the IR.  相似文献   

5.
The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N‐glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF–EGFR binding takes place through a large‐scale induced‐fitting mechanism. Proteins 2017; 85:561–570. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Structural studies have shown that ligand-induced epidermal growth factor receptor (EGFR) dimerization involves major domain rearrangements that expose a critical dimerization arm. However, simply exposing this arm is not sufficient for receptor dimerization, suggesting that additional ligand-induced dimer contacts are required. To map these contributions to the dimer interface, we individually mutated each contact suggested by crystallographic studies and analyzed the effects on receptor dimerization, activation, and ligand binding. We find that domain II contributes >90% of the driving energy for dimerization of the extracellular region, with domain IV adding little. Within domain II, the dimerization arm forms much of the dimer interface, as expected. However, a loop from the sixth disulfide-bonded module (immediately C-terminal to the dimerization arm) also makes a critical contribution. Specific ligand-induced conformational changes in domain II are required for this loop to contribute to receptor dimerization, and we identify a set of ligand-induced intramolecular interactions that appear to be important in driving these changes, effectively "buttressing" the dimer interface. Our data also suggest that similar conformational changes may determine the specificity of ErbB receptor homo- versus heterodimerization.  相似文献   

7.
Crystallographic studies showed that epidermal growth factor (EGF) receptor activation involves major domain rearrangements. Without bound ligand, the extracellular region of the receptor (sEGFR) adopts a "tethered" configuration with its dimerization site occluded by apparently autoinhibitory intramolecular interactions. Ligand binding causes the receptor to become "extended," breaking the tether and exposing the dimerization site. Using small-angle X-ray scattering (SAXS), we confirm that the tethered and extended conformations are also adopted in solution, and we describe low-resolution molecular envelopes for an intact sEGFR dimer. We also use SAXS to monitor directly the transition from a tethered to extended configuration in the monomeric extracellular regions of ErbB3 and a dimerization-defective EGFR mutant. Finally, we show that mutating every intramolecular tether interaction in sEGFR does not greatly alter its conformation. These findings explain why tether mutants fail to activate EGF receptor and provide new insight into regulation of ErbB receptor conformation.  相似文献   

8.
Recent crystallographic data on the isolated extracellular domain of the epidermal growth factor receptor (EGFR) have suggested a model for its activation by ligand. We have tested this model in the context of the full-length EGFR displayed at the cell surface, by introducing mutations in two regions (CR1 and CR2) of the extracellular domain thought to be critical for regulation of receptor activation. Mutations in the CR1 and CR2 domains have opposing effects on ligand binding affinity, receptor dimerization, tyrosine kinase activation, and signaling competence. Tyr(246) is a critical residue in the CR1 loop, which is implicated in the positioning and stabilization of the receptor dimer interface after ligand binding; mutations of Tyr(246) impair or abolish receptor function. Mutations in CR2, which weaken the interaction that restricts the receptor to the tethered (inactive) state, enhance responsiveness to EGF by increasing affinity for the ligand. However, weakening of the CR1/CR2 interaction does not result in spontaneous activation of the receptors' kinase. We have used an antibody (mAb 806), which recognizes a transition state of the EGF receptor between the negatively constrained, tethered state and the fully active back-to-back dimer conformation, to follow conformational changes in the wild-type and mutant EGF receptors after ligand binding. Our results suggest that EGFR on the cell surface can be untethered, but this form is inactive; thus, untethering of the receptor is not sufficient for activation, and ligand binding is essential for the correct positioning of the two receptor subunits to achieve kinase activation.  相似文献   

9.
The fibroblast growth factor receptor 3 (FGFR3) is a member of the FGFR subfamily of the receptor tyrosine kinases (RTKs) involved in signaling across the plasma membrane. Generally, ligand binding leads to receptor dimerization and activation. Dimerization involves the transmembrane (TM) domain, where mutations can lead to constitutive activation in certain cancer types and also in skeletal malformations. Thus, it has been postulated that FGFR homodimerization must be inherently weak to allow regulation, a feature reminiscent of α and β integrin TM interactions. However, we show herein that in FGFR3‐TM, four C‐terminal residues, CRLR, have a profound destabilizing effect in an otherwise strongly dimerizing TM peptide. In the absence of these four residues, the dimerizing propensity of FGFR3‐TM is comparable to glycophorin, as shown using various detergents. In addition, the expected enhanced dimerization induced by the mutation associated to the Crouzon syndrome A391E, was observed only when these four C‐terminal residues were present. In the absence of these four residues, A391E was dimer‐destabilizing. Finally, using site specific infrared dichroism and convergence with evolutionary conservation data, we have determined the backbone model of the FGFR3‐TM homodimer in model lipid bilayers. This model is consistent with, and correlates with the effects of, most known pathological mutations found in FGFR‐TM.  相似文献   

10.
Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between (835)Ala and (918)Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events.  相似文献   

11.
To define the structures within the insulin receptor (IR) that are required for high affinity ligand binding, we have used IR fragments consisting of four amino-terminal domains (L1, cysteine-rich, L2, first fibronectin type III domain) fused to sequences encoded by exon 10 (including the carboxyl terminus of the alpha-subunit). The fragments contained one or both cysteine residues (amino acids 524 and 682) that form disulfides between alpha-subunits in native IR. A dimeric fragment designated IR593.CT (amino acids 1-593 and 704-719) bound (125)I-insulin with high affinity comparable to detergent-solubilized wild type IR and mIR.Fn0/Ex10 (amino acids 1-601 and 650-719) and greater than that of dimeric mIR.Fn0 (amino acids 1-601 and 704-719) and monomeric IR473.CT (amino acids 1-473 and 704-719). However, neither IR593.CT nor mIR.Fn0 exhibited negative cooperativity (a feature characteristic of the native insulin receptor and mIR.Fn0/Ex10), as shown by failure of unlabeled insulin to accelerate dissociation of bound (125)I-insulin. Anti-receptor monoclonal antibodies that recognize epitopes in the first fibronectin type III domain (amino acids 471-593) and inhibit insulin binding to wild type IR inhibited insulin binding to mIR.Fn0/Ex10 but not IR593.CT or mIR.Fn0. We conclude the following: 1) precise positioning of the carboxyl-terminal sequence can be a critical determinant of binding affinity; 2) dimerization via the first fibronectin domain alone can contribute to high affinity ligand binding; and 3) the second dimerization domain encoded by exon 10 is required for ligand cooperativity and modulation by antibodies.  相似文献   

12.
Structural analysis of receptor tyrosine kinases   总被引:11,自引:0,他引:11  
Receptor tyrosine kinases (RTKs) are single-pass transmembrane receptors that possess intrinsic cytoplasmic enzymatic activity, catalyzing the transfer of the γ-phosphate of ATP to tyrosine residues in protein substrates. RTKs are essential components of signal transduction pathways that affect cell proliferation, differentiation, migration and metabolism. Included in this large protein family are the insulin receptor and the receptors for growth factors such as epidermal growth factor, fibroblast growth factor and vascular endothelial growth factor. Receptor activation occurs through ligand binding, which facilitates receptor dimerization and autophosphorylation of specific tyrosine residues in the cytoplasmic portion. The phosphotyrosine residues either enhance receptor catalytic activity or provide docking sites for downstream signaling proteins. Over the past several years, structural studies employing X-ray crystallography have advanced our understanding of the molecular mechanisms by which RTKs recognize their ligands and are activated by dimerization and tyrosine autophosphorylation. This review will highlight the key results that have emerged from these structural studies.  相似文献   

13.
Membrane glycoconjugates on the Leishmania parasites, notably leishmanolysin and lipophosphoglycan, have been implicated in attachment and invasion of host macrophages. However, the function of parasite surface Ag 2 (PSA-2) and membrane proteophosphoglycan (PPG) has not been elucidated. In this study we demonstrate that native and recombinant Leishmania infantum PSA-2, which consists predominantly of 15 leucine-rich repeats (LRR) and a recombinant LRR domain derived from L. major PPG, bind to macrophages. The interaction is restricted to macrophages and appears to be calcium independent. We have investigated the PSA-2-macrophage interaction to identify the host receptor involved in binding and we show that binding of PSA-2 to macrophages can be blocked by Abs to the complement receptor 3 (CR3, Mac-1). Data derived from mouse macrophage studies were further confirmed using cell lines expressing human CR3, and showed that PSA-2 also binds to the human receptor. This is the first demonstration of a functional role for PSA-2. Our data indicate that in addition to leishmanolysin and lipophosphoglycan, parasite attachment and invasion of macrophages involve a third ligand comprising the LRRs shared by PSA-2 and PPG and that these interactions occur via the CR3.  相似文献   

14.
Cryo‐electron microscopy (cryo‐EM) is a structural biological method that is used to determine the 3D structures of biomacromolecules. After years of development, cryo‐EM has made great achievements, which has led to a revolution in structural biology. In this article, the principle, characteristics, history, current situation, workflow, and common problems of cryo‐EM are systematically reviewed. In addition, the new development direction of cryo‐EM—cryo‐electron tomography (cryo‐ET), is discussed in detail. Also, cryo‐EM is prospected from the following aspects: the structural analysis of small proteins, the improvement of resolution and efficiency, and the relationship between cryo‐EM and drug development. This review is dedicated to giving readers a comprehensive understanding of the development and application of cryo‐EM, and to bringing them new insights.  相似文献   

15.
Receptor tyrosine kinases (RTKs) are a large family of cell surface receptors that sense growth factors and hormones and regulate a variety of cell behaviours in health and disease. Contactless activation of RTKs with spatial and temporal precision is currently not feasible. Here, we generated RTKs that are insensitive to endogenous ligands but can be selectively activated by low‐intensity blue light. We screened light‐oxygen‐voltage (LOV)‐sensing domains for their ability to activate RTKs by light‐activated dimerization. Incorporation of LOV domains found in aureochrome photoreceptors of stramenopiles resulted in robust activation of the fibroblast growth factor receptor 1 (FGFR1), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET). In human cancer and endothelial cells, light induced cellular signalling with spatial and temporal precision. Furthermore, light faithfully mimicked complex mitogenic and morphogenic cell behaviour induced by growth factors. RTKs under optical control (Opto‐RTKs) provide a powerful optogenetic approach to actuate cellular signals and manipulate cell behaviour.  相似文献   

16.
The Nogo receptor (NgR) plays a central role in mediating growth-inhibitory activities of myelin-derived proteins, thereby severely limiting axonal regeneration after injury of the adult mammalian central nervous system (CNS). The inhibitory proteins Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) all bind to the extracellular leucine-rich repeat (LRR) domain of NgR, which provides a large molecular surface for protein-protein interactions. However, epitopes within the LRR domain of NgR for binding Nogo, MAG and OMgp have not yet been revealed. Here, we report an evolutionary approach based on the ribosome display technology for detecting regions involved in ligand binding. By applying this method of "affinity fingerprinting" to the NgR ligand binding domain we were able to detect a distinct region important for binding to Nogo. Several residues defining the structural epitope of NgR involved in interaction with Nogo were subsequently confirmed by alanine scanning mutagenesis.  相似文献   

17.
It is well known the dimerization state of receptor tyrosine kinases (RTKs), in conjunction with binding partners such as the growth factor receptor bound protein 7 (Grb7) protein, plays an important role in cell signaling regulation. Previously, we proposed, downstream of RTKs, that the phosphorylation state of Grb7SH2 domain tyrosine residues could control Grb7 dimerization, and dimerization may be an important regulatory step in Grb7 binding to RTKs. In this manner, additional dimerization‐dependent regulation could occur downstream of the membrane‐bound kinase in RTK‐mediated signaling pathways. Extrapolation to the full‐length (FL) Grb7 protein, and the ability to test this hypothesis further, has been hampered by the availability of large quantities of pure and stable FL protein. Here, we report the biophysical characterization of the FL Grb7 protein and also a mutant representing a tyrosine‐phosphorylated Grb7 protein form. Through size exclusion chromatography and analytical ultracentrifugation, we show the phosphorylated‐tyrosine‐mimic Y492E‐FL‐Grb7 protein (Y492E‐FL‐Grb7) is essentially monomeric at expected physiological concentrations. It has been shown previously the wild‐type FL Grb7(WT‐FLGrb7) protein is dimeric with a dissociation constant (Kd) of approximately 11μM. Our studies here measure a FL protein dimerization Kd of WT‐FL‐Grb7 within one order of magnitude at approximately 1μM. The approximate size and shape of the WT‐FL‐Grb7 in comparison the tyrosine‐phosphorylation mimic Y492E‐FL‐Grb7 protein was determined by dynamic light scattering methods. In vitro phosphorylation of the Grb7SH2 domain indicates only one of the available tyrosine residues is phosphorylated, suggesting the same phosphorylation pattern could be relevant in the FL protein. The biophysical characterization studies in total are interpreted with a view towards understanding the functionally active Grb7 protein conformation.  相似文献   

18.
Wang Q  Villeneuve G  Wang Z 《EMBO reports》2005,6(10):942-948
Given that ligand binding is essential for the rapid internalization of epidermal growth factor receptor (EGFR), the events induced by ligand binding probably contribute to the regulation of EGFR internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. Whereas the initial results are controversial regarding the role of EGFR kinase activity in EGFR internalization, more recent data suggest that EGFR kinase activation is essential for EGFR internalization. However, we have shown here that inhibition of EGFR kinase activation by mutation or by chemical inhibitors did not block EGF-induced EGFR internalization. Instead, proper EGFR dimerization is necessary and sufficient to stimulate EGFR internalization. We conclude that EGFR internalization is controlled by EGFR dimerization, rather than EGFR kinase activation. Our results also define a new role for EGFR dimerization: by itself it can drive EGFR internalization, independent of its role in the activation of EGFR kinase.  相似文献   

19.
The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ~40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization.  相似文献   

20.
Leucine-rich repeat receptor kinases (LRR-RKs) are the largest sub-family of transmembrane receptor kinases in plants. In several LRR-RKs, a loop-out region called an 'island domain', which intercepts the extracellular tandem LRRs at a position near the transmembrane domain, constitutes the ligand-binding pocket, but the absence of the island domain in numerous LRR-RKs raises questions about which domain recognizes the ligand in non-island domain LRR-RKs. Here, we used photoaffinity labeling followed by chemical and enzymatic digestion to show that BAM1, a CLV1/BAM-family LRR-RK whose extracellular domain comprises 22 consecutive LRRs, directly interacts with the small peptide ligand CLE9 at the LRR6-LRR8 region that is relatively distal from the transmembrane domain. Multiple sequence alignment and homology modeling revealed that the inner concave side of LRR6-LRR8 of CLV1/BAM-family LRR-RKs deviates slightly from the LRR consensus. In support of our findings, the clv1-4 mutant carries a missense mutation at the inner concave side of LRR6 of CLV1, and introduction of the corresponding mutation in BAM1 resulted in complete loss of ligand binding activity. Our results indicate that the ligand recognition mechanisms of plant LRR-RKs are more complex and diverse than anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号