首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The community of Charophytes in the Imboassica coastal lagoon in Brazil (22° 24 S and 42° 42 W) sometimes occupies almost the entire benthic region, and presents a large variation in C:N:P ratio. The effect of drawdown on the regeneration and buildup of biomass and on the nutrient concentration of these macroalgae was studied at three different sampling sites. Drawdown results in a high level of mortality in the macroalgae stands and after the water level later rises, the process of oospore germination begins. The drawdowns occurred in November 96 and January 97, and after March 97 we took samples in order to determine biomass values and the concentration of carbon, nitrogen and phosphorus. The results indicate that the fast growth of Charophytes may absorb a great amount of the nutrients entering the lagoon. The biomass reached maximum values of between 400 and 600 g DW m–2, and the C:N:P ratio varied from 51:7:1 to 1603:87:1, indicating that this macroalgae may grow in a wide range of nutrient concentration. The presence of this community in the Imboassica lagoon may act as one of the limiting factors controlling phytoplanktonic primary production, decreasing nutrient availability in the water column (`bottom-up' control) and keeping the water clear after drawdowns. Probably through the habitat structure produced by the great biomass reached, they provide substrate and shelter for the structuring of a community with grazing zooplankton, which acts as a `top-down' controlling mechanism on the phytoplankton.  相似文献   

2.
Monthly samples of Corophium orientale were collected during February 1998–February 1999 in both parts of Monolimni lagoon (0.3 < Sal. < 6 psu, 2 < Temp. < 28.5 °C). Corophium orientaleshowed a semiannual life cycle. In the southern part, breeding occurred from early spring to mid autumn having three peaks, in early spring, early summer and early autumn, and three cohorts were produced, a spring cohort, a summer cohort and an overwintering one. In the shallower innermost northern part of Monolimni lagoon, breeding peaked in mid-spring and, also, in early autumn, and two discrete cohorts, a spring and an overwintering one, were produced. A lack of large individuals, attributed to a temporary size – selective predation by migrating shorebirds, was observed during summer. That lack possibly contributed to the hiatus in reproduction. Photoperiod seemed to be a more important cue than temperature in the initiation of the reproductive cycle, while extremely low salinities (<1 psu) did not deter breeding. Females attained maturity at a smaller size in late spring and, especially, in summer than in early spring at lower temperatures. Brood size was a function of females body size. Females, matured during summer at high temperatures, showed the lowest brood size, body length ratio. Mean brood size was small (12–13 early embryos) and embryo loss during development high (54%), possibly due to a negative effect of low salinities. A 1:1 sex ratio existed in the small body length classes, but females preponderated in the large ones. The spring cohort in the southern part, which developed at moderate temperatures, showed the highest growth rate (40 m day–1). Secondary production of C. orientalecalculated by Hyness method gave a mean annual density of 4562.5 and 9327.6 ind. m–2, a mean annual crop (B) of 1.03 and 2.67 g DW m–2, an annual production (P) of 6.91 and 22.54 g DW m–2 and a P/B ratio of 6.7 and 8.4 in the northern and southern part of the lagoon, respectively.  相似文献   

3.
Ulva rigida was cultivated in 7501 tanks at different densities with direct and continuous inflow (at 2, 4, 8 and 12 volumes d–1) of the effluents from a commercial marine fishpond (40 metric tonnes, Tm, of Sparus aurata, water exchange rate of 16 m3 Tm–1) in order to assess the maximum and optimum dissolved inorganic nitrogen (DIN) uptake rate and the annual stability of the Ulva tank biofiltering system. Maximum yields (40 g DW m–2 d–1) were obtained at a density of 2.5 g FW 1–1 and at a DIN inflow rate of 1.7 g DIN m–2 d–1. Maximum DIN uptake rates were obtained during summer (2.2 g DIN M–2 d–1), and minimum in winter (1.1 g DIN m–2 d–1) with a yearly average DIN uptake rate of 1.77 g DIN m–2 d–1 At yearly average DIN removal efficiency (2.0 g DIN m–2 d–1, if winter period is excluded), 153 m2 of Ulva tank surface would be needed to recover 100% of the DIN produced by 1 Tm of fish.Abbreviations DIN= dissolved inorganic nitrogen (NH inf4 sup+ + NO inf3 sup– + NO inf2 sup– ); - FW= fresh weight; - DW= dry weight; - PFD= photon flux density; - V= DIN uptake rate  相似文献   

4.
The abundance, generation time and production ofChironomus salinarius larvae in a lagoon fish-pond system in the Bay of Cádiz were studied by taking monthly samples at 3 sites during 1991 and 1992. Numerical abundance and biomass of larvae showed considerable spatial, seasonal and interannual variation (ANCOVAs,P<0.001). The maximum mean annual density was 7048 larvae m–2, and corresponded to a biomass of 3.08 g dry weight (DW) m–2. It was recorded at the site with the lowest rate of water renewal. Seasonal patterns were similar at all sites, with main annual peaks of abundance and biomass in autumn-early winter. Chironomid density was positively related to the biomass of benthic macroalgae (P<0.001). The population studied was multivoltine with a probable average of five generations per year, with overlapping cohorts and a predominance of third- and fourth-instar larvae. Estimates of annual production ranged between 72.2 g DW m–2 yr–1 at the site with the lowest rate of water renewal in 1991 and 0.1 g DW m–2 yr–1 at the site with the highest rate of water renewal in 1992. Mean annual production and the production/biomass ratio for the system was estimated to be 16.8 g DW m–2 yr–1 and 12.7, respectively. Possible factors leading to the observed density fluctuations are discussed, as well as possible sources of error in production estimates.  相似文献   

5.
K. Jenderedjian 《Hydrobiologia》1994,278(1-3):287-290
A modification of the Hynes' method was used to estimate production of Potamothrix alatus paravanicus Poddubnaya & Pataridze (Tubificidae), the dominant species of benthic invertebrate in Lake Sevan. Maximum production (5–24 g mt\-2 wet weight) occurred in the sublittoral, while maximum biomass was found (8–17 g m–2 wet weight) in the profundal. The turnover ratio of the average cohort varied between 2.4 and 5.0. The annual turnover ratio (P/B) decreased from 2.1–3.1 in the littoral to 0.1–0.4 in the profundal zone.A logarithmic correlation was found between P/B and temperature and oxygen regime, and depth and average size of clitellate specimens.  相似文献   

6.
The present study was carried out in the bamboo (Chusquea tessellata) páramo of Parque Natural Nacional de Chingaza, Eastern Cordillera, Colombia from December 1987 to April 1988. Above-ground biomass structure of bamboo páramo was quantified in 16 plots. These data are compared with previous results on above-ground biomass structure of bunch-grass (Calamagrostis spp.) páramos.The total (non-living and living) above-ground biomass of a Chusquea tessellata bamboo páramo was low (2,625 g DW · m–2) compared to bunch-grass páramo. Nevertheless, higher values of standing living biomass and litter are found in the bamboo páramo due to the leaf shed of the bamboo. The thick litter layer may inhibit germination and growth of nearby plants.Maximum biomass is found near the ground surface. Cumulative LAI (In transformed) and height in the bamboo vegetation are related parabolically for Chusquea tessellata and linearly for bunch-grass due to differences in leaf distribution. The mean bifacial LAI of living Chusquea tessellata leaves is 2.2 m2 · m–2, whereas it is 2.5 m2 · m-2 for all Poaceae.  相似文献   

7.
Rhodospirillum rubrum was grown continuously and photoheterotrophically under light limitation using a cylindrical photobioreactor in which the steady state biomass concentration was varied between 0.4 to 4 kg m–3 at a constant radiant incident flux of 100 W m–2. Kinetic and stoichiometric models for the growth are proposed. The biomass productivities, acetate consumption rate and the CO2 production rate can be quantitatively predicted to a high level of accuracy by the proposed model calculations. Nomenclature: C X, biomass concentration (kg m–3) D, dilution rate (h–1) Ea, mean mass absorption coefficient (m2 kg–1) I , total available radiant light energy (W m–2) K, half saturation constant for light (W m–2) R W, boundary radius defining the working illuminated volume (m) r X, local biomass volumetric rate (kg m–3 h–1) <r X>, mean volumetric growth rate (kg m–3 h–1) V W, illuminated working volume in the PBR (m–3). Greek letters: , working illuminated fraction (–) M, maximum quantum yield (–) bar, mean energetic yield (kg J–1).  相似文献   

8.
This paper presents the results of a study on the clonal growth of Typha domingensis Pers. in the Imboassica lagoon, in the intervals between four drawdowns. Sampling was performed over a period of two years, from permanent quadrats, in the four months after each of the drawdowns. The high mortality of the macrophytes after each drawdown is followed by a period in which the stands recover by producing ramets. The results have shown that the growth areas around the boundary of the stand (boundary band, BB) and one further towards the middle (innermost zone, IZ) show different recovery characteristics. The BB area recovered more quickly after the first drawdown, but both areas had the same accumulated biomass after the third drawdown. At the contact boundary, (CB) with stand of Eleocharis mutata, a decrease in the growth of T. domingensis occurred with a progressive invasion of E. mutata in its stand. After 10 months with no drawdown, T. domingensis produced a large quantity of inflorescences, which indicates recovery. It can therefore be concluded that successive drawdowns may decrease the regeneration ability of T. domingensis, favoring the expansion of E. mutata in the lagoon.  相似文献   

9.
Submerged macrophytes are a major component of freshwater ecosystems, yet their net effect on water column phosphorus (P), algae, and bacterioplankton is not well understood. A 4-month mass-balance study during the summer quantified the net effect of a large (5.5 ha) undisturbed macrophyte bed on these water-column properties. The bed is located in a slow-flowing (0.05–0.1 cm s–1) channel between two lakes, allowing for the quantification of inputs and outputs. The P budget for the study period showed that, despite considerable short-term variation, the macrophyte bed was a negligible net sink for P (0.06 mg m–2 day–1, range from –0.76 to +0.79 mg m–2 day–1), demonstrating that loading and uptake processes in the weedbed roughly balance over the summer. Chlorophyll a was disproportionately retained relative to particulate organic carbon (POC), indicating that the algal component of the POC was preferentially trapped. However, the principal contribution of the weedbed to the open water was a consistent positive influence on bacterioplankton production over the summer. Conservative extrapolations based on measured August specific exports (m–2 day–1) of P and bacterial production exiting the weedbed applied to five regional lakes varying in lake morphometry and macrophyte cover suggest that even in the most macrophyte dominated of lakes (66% cover), P loading from submerged weedbeds never exceeds 1% day–1 of standing epilimnetic P levels, whereas subsidization of bacterioplankton production can reach upward of 20% day–1. The presence of submerged macrophytes therefore differentially modifies algae and bacteria in the water column, while modestly altering P dynamics over the summer.  相似文献   

10.
Phytoplankton growth in the shallow, turbid Lake Loosdrecht (The Netherlands) is importantly influenced by light availability, and thus the concentrations of the various light-attenuating materials. The system is highly eutrophic and supports an algal biomass of ca. 160 mg Chl m–3. A model is proposed here which predicts algal growth in the lake as a function of the light received and subsequent attenuation in the water column by phytoplankton, tripton and background colour. The model is based on an energy balance which relates growth rate to the true growth yield on light energy and the energy demand for cell maintenance. The coefficients for energy conversion (Y = 0.002 gDW kJ–1) and cell maintenance (µe = 0.031 day–1) were determined from steady state growth kinetics of Prochlorothrix hollandica in light-limited laboratory flow systems with the same depth as the lake and receiving summer average conditions of irradiance. Light attenuation by phytoplankton and tripton were quantified using specific attenuation coefficients: 0.011 m2 mg–1 Chl for the phytoplankton and 0.23 m2 g–1 DW for tripton.The growth studies demonstrated that Lake Loosdrecht can support a much higher algal biomass in the absence of non-algal particulate matter. The proposed model is used to predict chlorophyll a concentrations in dependence on growth rate and levels of tripton. Since approximately 75% of the sestonic dry weight in Lake Loosdrecht may be attributed to tripton, it is concluded that the algal biomass is markedly lowered by the abundance of tripton in the water column. A knowledge of the sources and fate of tripton in the lake is thus of fundamental importance in modelling phytoplankton dynamics.  相似文献   

11.
Phosphorus and nitrogen excretion rates by zooplankton communities from two eutrophic and shallow Dutch lakes were measured in laboratory. The variations in excretion rates in the lakes (May–October) were caused mainly by fluctuation in zooplankton biomass. Mean summer excretion rates (June–September) were 2.4 and 0.9 µg PO4P·1–1·d–1 in Lake Loosdercht and Lake Breukeleveen, respectively. This difference between the lakes was caused mainly by the lower zooplankton biomass in Lake Breukeleveen. The excretion of 2.4 µg PO4P·1–1·d compared with the calculated P-demand of phytoplankton of 8.0 µg PO4P·1–1·d–1 is substantial in the summer (June–September) and far more important than the external P-supply of 0.4 µg P·1–1·d–1 and sediment release of 0.5 µg P·1–1·d–1. Both temperature and composition of zooplankton affected the weight specific excretion rates of the zooplankton community. The weight specific community excretion rates of P and N increased with temperature (exponential model); 1–8 g PO4P·mg–1 zooplankton-C·d–1 and 5–42 µg NH3N·mg–1 zooplankton-C·d–1 (10°C–20°C).  相似文献   

12.
A chlorophyll fluorescence technique was applied to anin situ study on the effects of low temperature and high light stresses onSpirulina cultures grown outdoors in controlled tubular photobioreactors at high (1.1 g L–1) and low (0.44 g L–1) biomass concentrations. Diurnal changes in PSII photochemistry (F v/F m) after 15 min of darkness, or in the light (dF/F m), and non-photochemical (qN) quenching were measured using a portable, pulse-amplitude-modulated fluorometer. The depression of theF v/F m ratio ofSpirulina cultures grown outdoors at 25°C (i.e. 10°C below optimum for growth) and 0.44 g L–1, reached 30% at the middle of the day. At the same time of the day thedF/F m ratio showed a reduction of up to 52%. The depression of bothF v/F m anddF/F m was lower in the cultures grown at 1.1 g L–1. Photoinhibition reduced the daily productivity of the culture grown at 0.44 g L–1 and 25°C by 33% with respect to that grown at 35°C. Changes in the growth yields of the cultures grown under different temperatures and growth rates correlate well with analogous changes in photon yield (dF/F m). Simple measurements of photochemical yield (F v/F m) can be used to test the physiological status ofSpirulina cultures. The results indicate that the saturating pulse fluorescence technique, when usedin situ, is a powerful tool for assessment of the photosynthetic characteristics of outdoor cultures ofSpirulina.  相似文献   

13.
Photosynthetic activity by phytoplankton was measured during the ice-free seasons of 1984, 1985 and 1987 using the 14C radioassay in high altitude Emerald Lake (California). Relative quantum yield (B) and light-saturated chlorophyll-specific carbon uptake (Pm B) were calculated from the relationship of light and photosynthesis fitted to a hyperbolic tangent function. Temporal changes in Pm B showed no regular pattern. Seasonal patterns of B generally had peaks in the summer and autumn. Phytoplankton biomass (as measured by chlorophyll a) and light-saturated carbon uptake (Pm) had peaks in the summer and autumn which were associated with vertical mixing. Estimates of mean daily carbon production were similar among the three years: 57 mg C m–2 2 d–1 in 1984, 70 mg C m–2 2 d–1 in 1985 and 60 mg C m–2 d–1 in 1987. Primary productivity in Emerald Lake is low compared to other montane lakes of California and similar to high-altitude or high-latitude lakes in other regions.  相似文献   

14.
Among 150 strains, including marine cyanobacteria isolated from coastal areas of Japan and a freshwater cyanobacterium from the IAM collection, Spirulina platensis IAM M-135, the marine cyanobacterium Synechococcus sp. NKBG 042902 contained the highest amount of phycocyanin (102 mg/g dry cell weight). We have proposed that the cyanobacterium could be an alternative producer for phycocyanin. The effects of light intensity and light quality on the phycocyanin content in cells of Synechococcus sp. NKBG 042902 were investigated. When the cyanobacterium was cultured under illumination of 25 mol m–2 s–1 using a cool-white fluorescent lamp, the phycocyanin content was highest, and the phycocyanin and biomass productivities were 21 mg 1–1 day–1 and 100 mg 1–1 day–1 respectively. Red light was essential for phycocyanin production by this cyanobacterium. Phycocyanin and biomass production were carried out by the cyanobacterium cultures grown under only red light (peak wavelength at 660 nm) supplied from light-emitting diodes (LED). Maximum phycocyanin and biomass productivities were 24 mg 1–1 day–1 and 130 mg 1–1 day–1 when the light intensity of the LED was 55 mol m–2 s–1.  相似文献   

15.
Imboassica lagoon is an urban coastal lagoon located in the municipality of Macaé (RJ), which has been exposed to a process of artificial eutrophication through the inflow of untreated sewage, as well as artificial openings of the sandbar that separates it from the ocean, provoking drastic modifications in this ecosystem. The sampling for the analysis of the community of macroinvertebrates associated with Charopyceae (Chara angolensis e C. fibrosa) were performed between October 1995 and October 1997, with a total of 9 samplings at two sampling stations: one located in the innermost area of the lagoon and another at the mouth of the main sewage channel, close to the sandbar. Throughout this period, four artificial sandbar-opening events were recorded, resulting in changes in the biomass of the macroalgae and in the densities of the macroinvertebrate populations. Through the analysis of the density of organisms per square meter, and density of organisms per 100 g dry weight of Chara, it was established that the biomass of the macroalgae has a direct influence on the density of the associated macrofauna. The greater development of the periphytic community in the area close to the inflow of sewage allows for the development of a community of macroinvertebrates with high densities, composed mainly of scraping organisms, such as the mollusc Heleobia australis (Hidrobiidae).  相似文献   

16.
Gelidium sesquipedale is the most important raw material used for extraction of agar in Spain. Based on chemostats, a system of culture for macroalgae with a continuous flow of culture medium has been developed. A stressed morphotype from the South of Spain was cultured, and the effects of different rates of NO 3 flow on growth and internal constituents were investigated in the laboratory. Cultivation was successful after optimizing factors affecting growth, such as irradiance level, renewal rate and water movement. Mass production was dependent on N supply. With a flow of 35 mol NO3 g–1 DW d–1, optimal values of growth (2.1% d–1) and biomass yield were obtained. In these conditions, biomass yield resembled the values observed in natural populations (about 500 g DW m–2 y–1). When the flow of N was reduced to 15 mol NO 3 g–1 DW d–1, growth rate and biomass yield were reduced three-fold, and were null when N was supplied as 7 mol NO 3 g–1 DW d–1. C:N ratio was an index of the physiological status of the tissue, remaining low when N was sufficient and raised to critical values when N supply was limited. Phycobiliproteins, kept at a constant irradiance level, were affected by N supply, acting as an internal nitrogen reserve, unlike chlorophylla. An effective phycobiliprotein synthesis took place when the flow of N was sufficient. Agar yield, on dry weight basis, was similar as a function of N flow, whereas agar yield of the culture was higher when N was sufficient as a result of growth not being limited by N.This system of culture, commonly used in microalgal studies, may have an important use in macroalgae as a system to obtain biomass of high quality as well as a good tool for physiological studies in conditions of continuous and controlled flow of nutrients.  相似文献   

17.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

18.
Synopsis Twenty-two samples of sand-dwelling fishes were collected from sublittoral sandy substrata off the Cape Peninsula, South Africa using a novel quantitative technique in which the ichthyocide, rotenone, was introduced beneath 6.25 m2 plastic sheets weighted around the perimeter with chain. A total of 94 fish of eight species and four families were recorded. Of these, four species of the family Clinidae made up 92% of the material. Fish densities varied from 0.10–2.96 fish m–2 (0.17–1.14 g m–2). Distribution patterns amongst the Clinidae were explained by sediment particle size, with all of the newly discovered species, Cancelloxus longior, inhabiting fine sand (median grain size 0.25–0.50 mm), and all Xenopoclinus leprosus, C. elongatus and Pavoclinus smalei occurring in gravel (> 1 mm). Xenopoclinus kochi was found in all sediment types, but was most abundant in coarse substrata. Diets of all four species were similar, consisting chiefly of amphipods and isopods. However, small differences in prey preference were evident. All four species reached sexual maturity at 25–30 mm standard length, were viviparous, exhibited superembryonation and gave birth to live young of approximately 14 mm. Breeding seasonality occurred in all species except P. smalei.  相似文献   

19.
Pond cultivation of the subtropical, euryhaline macroscopic red algaGracilaria tenuisipitata var.liui Zhanget Xia was carried out in brackish seawater (6–7) in the Gryt archipelago on the east coast of Sweden, using four outdoor tanks of 30–40 m3. Growth rate and nutrient uptake in batch culture were measured with the aim of estimating the water purification capacity ofG. tenuisipitata in outdoor conditions. Its ability to withstand epiphytic infections was also studied. An average growth rate of 4 biomass increase per day was recorded during two seasons with a maximum growth rate of 9 d–1. The initial biomass was usually 1 kgFW m–3 (FW, fresh weight). The nutrient uptake capacity was on average ca. 1 g Ni kgFW–1 d–1 and 0.08 g Pi kgFW–1 d–1 and the uptake rates for NH4 +-N were higher than those for NO3 -N. Both the growth rate and the nutrient uptake rate were highest at the highest water temperature. Co-cultivation with rainbow trout (Oncorhynchus mykiss) was tested: with trout fodder as the only nutrient inputG. tenuistipitata could grow and maintain low levels of Ni and Pi with optimum efficiency at a trout: alga ratio of 1:1 (w:w). Epiphytic growth of filamentous green and brown algae was limited, probably as a result of the high pH values caused by inorganic carbon uptake byG. tenuistipitata. The growth ofEnteromorpha intestinalis, the only significant epiphyte, was completely inhibited and the majority of plants died by a few days treatment with 100 µg 1–1 Cu2+, a concentration that did not severely affectG. tenuistipitata. We conclude thatG. tenuistipitata can be cultivated in outdoor ponds in southern Sweden during 5–6 months of the year using aerated or unaerated batch cultures and that wastewater from trout cultivation may be used as a nutrient source, resulting in purification with respect to N and P.  相似文献   

20.
Undaria pinnatifida gametophytes were grown in 2.5 l bubble column and airlift reactor at 25 °C and light intensity of 40 mol m–2 s–1 for 6 days. With aeration at 1 l min–1, the airlift reactor yielded higher growth rate (0.12 mg DW ml–1 d–1) than a bubble column (0.08 mg DW ml–1 d–1). The advantages were related to the more homogeneous fluid dynamic characteristics of the airlift reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号