首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low active material loading in the composite electrode of all‐solid‐state batteries (SSBs) is one of the main reasons for the low energy density in current SSBs. In this work, it is demonstrated with both modeling and experiments that in the regime of high cathode loading, the utilization of cathode material in the solid‐state composite is highly dependent on the particle size ratio of the cathode to the solid‐state conductor. The modeling, confirmed by experimental data, shows that higher cathode loading and therefore an increased energy density can be achieved by increasing the ratio of the cathode to conductor particle size. These results are consistent with ionic percolation being the limiting factor in cold‐pressed solid‐state cathode materials and provide specific guidelines on how to improve the energy density of composite cathodes for solid‐state batteries. By reducing solid electrolyte particle size and increasing the cathode active material particle size, over 50 vol% cathode active material loading with high cathode utilization is able to be experimentally achieved, demonstrating that a commercially‐relevant, energy‐dense cathode composite is achievable through simple mixing and pressing method.  相似文献   

2.
3.
阳极电泳和阴极电泳的快速半干新技术   总被引:7,自引:0,他引:7  
滤纸条半干技术在保证分辨率的前提下, 将凝胶电泳的电泳时间从原来的2~4h缩短到40~50min, 并简化了操作, 节省了实验费用, 不需配制大量的缓冲液. pH4.8较pH8.9阳极电泳提高了酸性蛋白质的电泳分辨率. pH5.5阴极电泳用于分离碱性样品可以得到很好的效果.  相似文献   

4.
Mechanisms of tumor electrochemical treatment (ECT) were studied using normal dog liver. Five physical and chemical methods were used. Two platinum electrodes were inserted into an anesthetized dog's liver at 3 cm separation. A voltage of 8.5 V direct current (DC) at an average current of 30 mA was applied for 69 min; total charge was 124 coulombs. Concentrations of selected ions near the anode and cathode were measured. The concentrations of Na+ and K+ ions were higher around the cathode, whereas the concentration of Cl ions was higher around the anode. Water contents and pH were determined near the anode and the cathode at the midpoint between the two electrodes and in an untreated area away from the electrodes. Hydration occurred around the cathode, and dehydration occurred around the anode. The pH values were 2.1 near the anode and 12.9 near the cathode. Spectrophotometric scans of the liver sample extract were obtained, and the released gases were identified by gas chromatography as chlorine at the anode and hydrogen at the cathode. These results indicate that a series of electrochemical reactions take place during ECT. The cell metabolism and its environment are severely disturbed. Both normal and tumor cells are rapidly and completely destroyed in this altered environment. We believe that the above reactions are the ECT mechanisms for treating tumors. Bioelectromagnetics 18:2–7, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
6.
Li‐rich metal oxide (LXMO) cathodes have attracted intense interest for rechargeable batteries because of their high capacity above 250 mAh g?1. However, the side effects of hybrid anion and cation redox (HACR) reactions, such as oxygen release and phase collapse that result from global oxygen migration (GOM), have prohibited the commercialization of LXMO. GOM not only destabilizes the oxygen sublattice in cycling, aggravating the well‐known voltage fading, but also intensifies electrolyte decomposition and Mn dissolution, causing severe full‐cell performance degradation. Herein, an artificial surface prereconstruction (ASR) for Li1.2Mn0.6Ni0.2O2 particles with a molten‐molybdate leaching is conducted, which creates a crystal‐dense anion‐redox‐free LiMn1.5Ni0.5O4 shell that completely encloses the LXMO lattice (ASR‐LXMO). Differential electrochemical mass spectroscopy and soft X‐ray absorption spectroscopy analyses demonstrate that GOM is shut down in cycling, which not only stabilizes HACR in ASR‐LXMO, but also mitigates the electrolyte decomposition and Mn dissolution. ASR‐LXMO displays greatly stabilized cycling performance as it retains 237.4 mAh g?1 with an average discharge voltage of 3.30 V after 200 cycles. More crucially, while the pristine LXMO cycling cannot survive 90 cycles in a pouch full‐cell matched with a commercial graphite anode and lean (2 g A?1 h?1) electrolyte, ASR‐LXMO shows high capacity retention of 76% after 125 cycles in full‐cell cycling.  相似文献   

7.
Sodium‐ion batteries (SIBs) are now being actively developed as low cost and sustainable alternatives to lithium‐ion batteries (LIBs) for large‐scale electric energy storage applications. In recent years, various inorganic and organic Na compounds, mostly mimicked from their Li counterparts, have been synthesized and tested for SIBs, and some of them indeed demonstrate comparable specific capacity to the presently developed LIB electrodes. However, the lack of suitable cathode materials is still a major obstacle to the commercial development of SIBs. Here, we present a brief review on the recent developments of SIB cathodes, with a focus on low cost and high energy density materials (> 450 Wh kg?1 vs Na) together with discussion of their Na‐storage mechanisms. The considerable differences in the structural requirements for Li‐ and Na‐storage reactions mean that it is not sufficient to design SIB cathode materials by simply mimicking LIB materials, and therefore great efforts are needed to discover new materials and reaction mechanisms to further develop variable cathodes for advanced SIB technology. Some directions for future research and possible strategies for building advanced cathode materials are also proposed here.  相似文献   

8.
In situ bioremediation of industrial chlorinated solvents, such as trichloroethene (TCE), is typically accomplished by providing an organic electron donor to naturally occurring dechlorinating populations. In the present study, we show that TCE dechlorinating bacteria can access the electrons required for TCE dechlorination directly from a negatively polarized (?450 mV vs. SHE) carbon paper electrode. In replicated batch experiments, a mixed dechlorinating culture, also containing Dehalococcoides spp., dechlorinated TCE to cis‐dichloroethene (cis‐DCE) and lower amounts of vinyl chloride (VC) and ethene using the polarized electrode as the sole electron donor. Conversely, neither VC nor ethene formation occurred when a pure culture of the electro‐active microorganism Geobacter lovleyi was used, under identical experimental conditions. Cyclic voltammetry tests, carried out on the filter‐sterilized supernatant of the mixed culture revealed the presence of a self‐produced redox mediator, exhibiting a midpoint potential of around ?400 mV (vs. SHE). This yet unidentified redox‐active molecule appeared to be involved in the extracellular electron transfer from the electrode to the dechlorinating bacteria. The ability of dechlorinating bacteria to use electrodes as electron donors opens new perspectives for the development of clean, versatile, and efficient bioremediation systems based on a controlled subsurface delivery of electrons in support of biodegradative metabolisms and provides further evidence on the possibility of using conductive materials to manipulate and control a range of microbial bioprocesses. Biotechnol. Bioeng. 2009;103: 85–91. © 2008 Wiley Periodicals, Inc.  相似文献   

9.
10.
To reduce the amount of phosphate buffer currently used in Microbial Fuel Cell's (MFC's), we investigated the role of biological nitrification at the cathode in the absence of phosphate buffer. The addition of a nitrifying mixed consortia (NMC) to the cathode compartment and increasing ammonium concentration in the catholyte resulted in an increase of cell voltage from 0.3 V to 0.567 V (external resistance of 100 Ω) and a decrease of catholyte pH from 8.8 to 7.05. A large fraction of ammonium was oxidized to nitrite, as indicated by an increase of nitrate-nitrogen (NO3–N). An MFC inoculated with an NMC and supplied with 94.2 mgN/l ammonium to the catholyte could generate a maximum power of 2.1 ± 0.14 mW (10.94 ± 0.73 W/m3). This compared favorably to an MFC supplied with either buffered or non-buffered solution. The buffer-free NMC inoculated cathodic chamber showed the smallest polarization resistance, suggesting that nitrification resulted in improved cathode performance. The improved performances of the phosphate buffer-free cathode and cell are positively related to biological nitrification, in which we suggest additional protons produced from ammonium oxidation facilitated electrochemical reduction of oxygen at cathode.  相似文献   

11.
12.
A microbial fuel cell using aerobic microorganisms as the cathodic catalysts is described. By using anaerobic sludge in the anode and aerobic sludge in the cathode as inocula, the microbial fuel cell could be started up after a short lag time of 9 days, generating a stable voltage of 0.324 V (R (ex) = 500 Omega). At an aeration rate of 300 ml min(-1) in the cathode, a maximum volumetric power density of up to 24.7 W m(-3) (117.2 A m(-3)) was reached. This research demonstrates an economic system for recovering electrical energy from organic compounds.  相似文献   

13.
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were considered two alternative pathways of dissimilatory nitrate reduction. In this study, we firstly reported that both denitrification and DNRA occurred in Pseudomonas alcaliphila strain MBR with an electrode as the sole electron donor in a double chamber bio‐electrochemical system (BES). The initial concentration of nitrate appeared as a factor determining the type of nitrate reduction with electrode as the sole electron donor at the same potential (?500 mV). As the initial concentration of nitrate increased, the fraction of nitrate reduced through denitrification also increased. While nitrite (1.38 ± 0.04 mM) was used as electron acceptor instead of nitrate, the electrons recovery via DNRA and denitrification were 43.06 ± 1.02% and 50.51 ± 1.37%, respectively. The electrochemical activities and surface topography of the working electrode catalyzed by strain MBR were evaluated by cyclic voltammetry and scanning electron microscopy. The results suggested that cells of strain MBR were adhered to the electrode, playing the role of electron transfer media for nitrate and nitrite reduction. Thus, for the first time, the results that DNRA and denitrification occurred simultaneously were confirmed by powering the strain with electricity. The study further expanded the range of metabolic reactions and had potential value for the recognization of dissimilatory nitrate reduction in various ecosystems. Biotechnol. Bioeng. 2012; 109: 2904–2910. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The effect of the oxygen availability over the performance of an air‐breathing microbial fuel cell (MFC) was studied by limiting the oxygen supply to the cathode. It was found that anodic reaction was the limiting stage in the performance of the MFC while oxygen was fully available at cathode. As the cathode was depleted of oxygen, the current density becomes limited by oxygen transport to the electrode surface. The exerted current density was maintained when oxygen mole fraction was higher than 10% due to the very good performance of the cathodic catalysts. However, the current density drastically falls when working at lower concentrations because of mass transfer limitations. In this sense it must be highlighted that the maximum exerted power, when oxygen mole fraction was higher than 10%, was almost three times higher than that obtained when oxygen mole fraction was 5%. Regarding to the wastewater treatment, a significant decrease in the COD removal was obtained when the MFC performance was reduced due to the limited availability of oxygen, which indicates the significant role of the electrogenic microorganisms in the COD removal in MFC. In addition, the low availability of oxygen at the cathode leads to a lower presence of oxygen at the anode, resulting in an increase in the coulombic efficiency. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:900–907, 2015  相似文献   

15.
The ever‐increasing demand for high‐performing, economical, and safe power storage for portable electronics and electric vehicles stimulates R&D in the field of chemical power sources. In the past two decades, lithium‐ion technology has proven itself a most robust technology, which delivers high energy and power capabilities. At the same time, current technology requires that the energy and power capabilities of Li‐ion batteries be ‘beefed up’ beyond the existing state of the art. Increasing the battery voltage is one of the ways to improve battery energy density; in Li‐ion cells, the objective of current research is to develop a 5‐volt cell, and at the same time to maintain high specific charge capacity, excellent cycling, and safety. Since current anode materials possess working potentials fairly close to the potential of a lithium metal, the focus is on the development of cathode materials. This work reviews and analyzes the current state of the art, achievements, and challenges in the field of high‐voltage cathode materials for Li‐ion cells. Some suggestions regarding possible approaches for future development in the field are also presented.  相似文献   

16.
17.
A wide spectrum of electrode potentials of minerals that compose sulfide ores enables the latter, when in contact with hydrothermal solutions, to form galvanic pairs with cathode potentials sufficient for electrochemical reduction of CO2. The experiments performed demonstrated the increase of cathode current on the rotating pyrite disc electrode in a range of potentials more negative than -800 mV in presence of CO2. In high-pressure experiments performed in a specially designed electrochemical cell equipped with a pyrite cathode and placed into autoclave, accumulation of formate was demonstrated after 24 hr passing of CO2 (50 atm, room temperature) through electrolyte solution. The formation of this product started on increasing the cathode potential to -800 mV (with respect to saturated silver chloride electrode). The yield grew exponentially upon cathode potential increase up to -1200 mV. The maximum current efficiency (0.12%) was registered at cathode potentials of about -1000 mV. No formate production was registered under normal atmospheric pressure and in the absence of imposed cathode potential. Neither in experiments, nor in control was formaldehyde found. It is proposed that the electrochemical reduction of CO2 takes part in the formation of organic molecules in hydrothermal solutions accompanying sulfide ore deposits and in 'black smokers' on the ocean floor.  相似文献   

18.
The bidomain model, which describes the behavior of many electrically active tissues, is equivalent to a multi-dimensional cable model and can be represented by a network of resistors and capacitors. For a two-dimensional sheet of tissue, the intracellular and extracellular conductivity tensors can be visualized as two ellipses. For any pair of conductivity tensors, a coordinate transformation can be found that reduces the extracellular ellipse to a circle and aligns the intracellular ellipse with the coordinate axes. The eccentricity of the intracellular ellipse in this new coordinate system is an important parameter. It can have two special values: zero (in which case the tissue has equal anisotropy ratios) or one (in which case the tissue is comprised of one-dimensional fibers coupled through the two-dimensional extracellular space). Thus the bidomain model provides a unifying framework within which the electrical behavior of a wide variety of nerve and muscle tissues can be studied.When the anisotropy ratios in the intracellular and extracellular domains are not equal, stimulation with an anode always causes depolarization of some region of tissue. An analogous effect occurs in models that describe one-dimensional fibers, in which an activating function determines the site of stimulation. Experiments indicate that cardiac muscle does not have equal anisotropy ratios. Therefore, models developed to describe stimulation of axons may also help in understanding stimulation of two- or three-dimensional cardiac tissue, and may explain the concept of anodal stimulation of cardiac tissue through a virtual cathode.  相似文献   

19.
K‐ion batteries are a potentially exciting and new energy storage technology that can combine high specific energy, cycle life, and good power capability, all while using abundant potassium resources. The discovery of novel cathodes is a critical step toward realizing K‐ion batteries (KIBs). In this work, a layered P2‐type K0.6CoO2 cathode is developed and highly reversible K ion intercalation is demonstrated. In situ X‐ray diffraction combined with electrochemical titration reveals that P2‐type K0.6CoO2 can store and release a considerable amount of K ions via a topotactic reaction. Despite the large amount of phase transitions as function of K content, the cathode operates highly reversibly and with good rate capability. The practical feasibility of KIBs is further demonstrated by constructing full cells with a graphite anode. This work highlights the potential of KIBs as viable alternatives for Li‐ion and Na‐ion batteries and provides new insights and directions for the development of next‐generation energy storage systems.  相似文献   

20.
Electron mediators and electron supply through a cathode were examined to enhance the reducing power for butyrate production by an acidogenic clostridium strain, Clostridium tyrobutyricum BAS 7. Among the tested electron mediators, methyl viologen (MV)‐amended cultures showed an increase of butyrate productivity (1.3 times), final concentration (1.4 times), and yield (1.3 times). The electron flow altered by MV addition from the ferredoxin pool to the NADH pool was shown by one electron model, implying that more available NADH increased butyrate production. In the cathode compartment poised at ?400 mV versus the Ag/AgCl electrode, the neutral red (NR)‐amended cultures of Clostridium tyrobutyricum BAS 7 increased butyrate concentration (from 5 to 8.8 g/L) and yield (from 0.33 up to 0.44 g/g) with no acetate production at all. Given that electrically reduced NR (NRred, yellow) by the cathode was re‐oxidized (NRox, red) in the cells on the basis of color change, electron flow from NRred to NAD+ (i.e., NADH generation) induced an increase in butyrate production. This is the first report to show the increase of butyric acid production by electrically driven acidogenesis. These results show that the electron flow altered NADH formation by electron mediators and by the cathodic electron donor, increasing the yield and selectivity of reduced end‐products like butyrate. Biotechnol. Bioeng. 2012; 109: 2494–2502. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号